深度学习-转置卷积
转置卷积
转置卷积(Transposed Convolution),也被称为反卷积(Deconvolution),是深度学习中的一种操作,特别是在卷积神经网络(CNN)中。它可以将一个低维度的特征图(如卷积层的输出)转换为更高维度的特征图(如上一层的输入),从而实现了上采样或反卷积的效果。
转置卷积的具体操作过程包括定义卷积核和进行卷积操作。首先,需要定义一个卷积核,其尺寸决定了转置卷积的输出尺寸。然后,使用定义的卷积核对填充后的输入进行卷积操作,从而得到上采样后的结果。
转置卷积在某些特定领域具有广泛应用,例如图像分割、生成对抗网络(GAN)和语音识别等任务。在图像分割任务中,转置卷积可以用于在解码器中恢复原先的尺寸,从而对原图中的每个像素进行分类。在生成对抗网络中,转置卷积可以用于将随机值转变为一个全尺寸的图片。
与传统的上采样方法相比,转置卷积的上采样方式并非预设的插值方法,而是具有可学习的参数,可以通过网络学习来获取最优的上采样方式。这使得转置卷积在图像处理任务中能够取得更好的效果。
在PyTorch中,可以使用torch.nn.ConvTranspose2d()来调用转置卷积操作,而在Caffe中也有对应的层deconv_layer。在实际应用中,转置卷积常常被用于CNN中对特征图进行上采样,比如语义分割和超分辨率任务中。
总之,转置卷积是一种强大的深度学习工具,它可以帮助我们更好地处理图像数据并提升模型性能。
卷积操作一般不会改变输入的高宽。若改变一般是往缩小改变。
在语义分割问题中,数据是像素级别的输入与输出,如果使用一般卷积使得高宽减小到很小的数值,则会造成数据损失。
转置卷积通常用于增大数据的高宽
转置卷积可以视作对像素信息的放大尝试。转置卷积是以一个不损失信息的方式变换feature图,把它拉大
·转置卷积在网络中的作用不是将图片还原(指还原成原图片的RGB信息),而是对每个像素进行标号归类。
虽然在卷积过程中会对数据结构的高宽作一定的压缩,但是通道数随之也会增加,并没有损失太多的信息量。这一过程可以看做图片数据的空间分辨维度在下降,但是特征分辨维度在上升。

相关文章:
深度学习-转置卷积
转置卷积 转置卷积(Transposed Convolution),也被称为反卷积(Deconvolution),是深度学习中的一种操作,特别是在卷积神经网络(CNN)中。它可以将一个低维度的特征图&#x…...
Unity性能优化工具介绍
文章目录 一.Stats组件1.Audio音频的数据组件:2.图形数据 二.Profiler 性能分析器 一.Stats组件 Unity自带Statistics(统计数据),Game视窗中点击Stats打开 1.Audio音频的数据组件: 1):Level 声音强度 单位是分贝(dB) 表示音频听声音的大小,是闪烁波动的. 2):SDPload 数据信…...
Math之向上向下取整
有时我们会遇到向上和向下取整的操作,这时我们可以使用Math类来进行操作。 1、向上取整 Math.ceil() 方法返回大于或等于指定表达式的最小整数(即向上取整)。如果参数是一个整数,那么结果就是这个整数本身。 示例: …...
MPP架构
MPP架构,即Massively Parallel Processing(大规模并行处理)架构,是一种用于处理大规模数据的并行计算架构。它通过将数据和计算能力分布在多个处理节点上,利用并行处理技术来加速数据处理和分析的速度。 在MPP架构中&…...
These relative modules were not found:* ../../../constant in
这个错误信息表明,你的项目在尝试加载一个相对路径模块 ../../../constant 时遇到了问题。具体来说,它在 ./node_modules/cache-loader/dist/cj 这个路径下找不到这个模块。 这里有几个可能的原因和相应的解决方案: 路径错误:首…...
2024最新彩虹聚合DNS管理系统源码v1.3 全开源
2024最新彩虹聚合DNS管理系统源码v1.3 全开源 聚合DNS管理系统可以实现在一个网站内管理多个平台的域名解析,目前已支持的域名平台有:阿里云、腾讯云、华为云、西部数码、DNSLA、CloudFlare。 本系统支持多用户,每个用户可分配不同的域名解…...
在Go语言中如何实现变参函数和函数选项模式
在Go语言编程中,我们经常会遇到需要给函数传递可选参数的情况。传统的做法是定义一个结构体,将所有可选参数作为结构体字段,然后在调用函数时创建该结构体的实例并传递。这种方式虽然可行,但是当可选参数较多时,创建结构体实例的代码就会变得冗长และ不太直观。 Go语言的一个…...
Spring Boot中的 6 种API请求参数读取方式
使用Spring Boot开发API的时候,读取请求参数是服务端编码中最基本的一项操作,Spring Boot中也提供了多种机制来满足不同的API设计要求。 接下来,就通过本文,为大家总结6种常用的请求参数读取方式。如果你发现自己知道的不到6种&a…...
Linux基础命令[27]-gpasswd
文章目录 1. gpasswd 命令说明2. gpasswd 命令语法3. gpasswd 命令示例3.1 不加参数3.2 -a(将用户加入组)3.3 -d(从组中删除用户)3.4 -r(删除组密码)3.5 -M(多个用户一起加入组)3.6 …...
机会约束转化为确定性约束-- 样本均值法
当涉及到新能源消纳的机会约束规划时,我们需要深入理解其背后的原理和采用的方法。以下是对上文内容的更详细且更贴切的展开解释: 机会约束转化为确定性约束-- 样本均值法代码获取戳此处代码获取戳此处代码获取戳此处 新能源消纳的机会约束 新能源&…...
uniapp中,当页面显示时触发子组件的重新渲染
使用watch监听数据变化: 在子组件中使用watch来监听父组件传递的数据,一旦数据发生变化,子组件就会重新渲染。 子组件代码示例: <template><div>{{ message }}</div> </template><script> export d…...
先进制造aps专题五 aps软件的排程算法和优化算法介绍
aps软件的核心,主要是数据管理,排程/优化算法,各类甘特图 所有aps软件排程算法都是Heuristics启发式算法(如Greedy算法),只是有的aps软件还支持ga遗传算法优化(比如sap apo,oracle aps,isuperap…...
【跳坑日记】暴力解决Ubuntu SSH报错: Failed to start OpenBSD Secure Shell server
报错环境说明: 服务器环境:Ubuntu 20.04 错误内容 最近服务器突然报错,提示如下图信息: 搜素了各种问答,国内的回答大多数是用 ssh-keygen -A命令来解决,但最终也无法登录服务器。 最终搜索到ask ubun…...
从需求角度介绍PasteSpider(K8S平替部署工具适合于任何开发语言)
你是否被K8S的强大而吸引,我相信一部分人是被那复杂的配置和各种专业知识而劝退,应该还有一部分人是因为K8S太吃资源而放手! 这里介绍一款平替工具PasteSpider,PasteSpider是一款使用c#编写的linux容器部署工具(使用PasteSpider和…...
线性三角化
点的线性三角化 输入一堆的点 [ R w c , t w c , p u c ] [R_{wc},t_{wc},p_{uc}] [Rwc,twc,puc]转化成空间的一系列射线 [ P w i , t w i ] , P w i t w c , t w i R w c p u c [P_{wi},t_{wi}],P_{wi}t_{wc},t_{wi}R_{wc}\times p_{uc} [Pwi,twi],Pwitwc…...
Golang os.Rename invalid cross-device link的原因
文章目录 背景运行环境 文件系统对比linux下的文件系统mac下的文件系统linux下的mv指令 golang的os.Rename源码os.Renamesyscall.Renamesyscall.RenameatSYS_RENAMEAT是什么 查看系统调用函数文档什么是man pageman page的用法user commandssystem calls renameat不支持跨挂载点…...
Flutter 中的 Badge 小部件:全面指南
Flutter 中的 Badge 小部件:全面指南 在移动应用设计中,徽章(Badge)是一种常见的UI元素,用于吸引用户注意并展示重要信息,如未读消息数量、新通知等。Flutter 通过各种第三方包提供了徽章小部件࿰…...
Java 多线程抢红包
问题需求 一个人在群里发了1个100元的红包,被分成了8个,群里有10个人一起来抢红包,有抢到的金额随机分配。 红包功能需要满足哪些具体规则呢? 1、被分的人数抢到的金额之和要等于红包金额,不能多也不能少。 2、每个人至少抢到1元…...
【PB案例学习笔记】-08 控件拖动实现
写在前面 这是PB案例学习笔记系列文章的第8篇,该系列文章适合具有一定PB基础的读者。 通过一个个由浅入深的编程实战案例学习,提高编程技巧,以保证小伙伴们能应付公司的各种开发需求。 文章中设计到的源码,小凡都上传到了gitee…...
读书笔记整理
1.对天才而言,任何努力都如做游戏般容易和有趣,兴趣是发展的原动力。从这个角度来看,通过普通人的劳动是无法创造天才的。 2.让孩子理解语法是很困难的。苦背不如练才是行之有效的办法。孩子们永远是故事迷,在教孩子们外语时&…...
【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...
【HTTP三个基础问题】
面试官您好!HTTP是超文本传输协议,是互联网上客户端和服务器之间传输超文本数据(比如文字、图片、音频、视频等)的核心协议,当前互联网应用最广泛的版本是HTTP1.1,它基于经典的C/S模型,也就是客…...
RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...
Element Plus 表单(el-form)中关于正整数输入的校验规则
目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入(联动)2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...
Kafka入门-生产者
生产者 生产者发送流程: 延迟时间为0ms时,也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于:异步发送不需要等待结果,同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...
MySQL JOIN 表过多的优化思路
当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...
Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换
目录 关键点 技术实现1 技术实现2 摘要: 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式(自动驾驶、人工驾驶、远程驾驶、主动安全),并通过实时消息推送更新车…...
Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)
引言 工欲善其事,必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后,我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集,就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...
掌握 HTTP 请求:理解 cURL GET 语法
cURL 是一个强大的命令行工具,用于发送 HTTP 请求和与 Web 服务器交互。在 Web 开发和测试中,cURL 经常用于发送 GET 请求来获取服务器资源。本文将详细介绍 cURL GET 请求的语法和使用方法。 一、cURL 基本概念 cURL 是 "Client URL" 的缩写…...
