零基础代码随想录【Day42】|| 1049. 最后一块石头的重量 II,494. 目标和,474.一和零
目录
DAY42
1049.最后一块石头的重量II
解题思路&代码
494.目标和
解题思路&代码
474.一和零
解题思路&代码
DAY42
1049.最后一块石头的重量II
力扣题目链接(opens new window)
题目难度:中等
有一堆石头,每块石头的重量都是正整数。
每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:
如果 x == y,那么两块石头都会被完全粉碎;
如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x。
最后,最多只会剩下一块石头。返回此石头最小的可能重量。如果没有石头剩下,就返回 0。
示例:
- 输入:[2,7,4,1,8,1]
- 输出:1
解释:
- 组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1],
- 组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1],
- 组合 2 和 1,得到 1,所以数组转化为 [1,1,1],
- 组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。
本题就和 昨天的 416. 分割等和子集 很像了,可以尝试先自己思考做一做。
视频讲解:动态规划之背包问题,这个背包最多能装多少?LeetCode:1049.最后一块石头的重量II_哔哩哔哩_bilibili
代码随想录
解题思路&代码
思路:
关键点:认识到什么是应用类背包问题,此处如何联系到背包?尽量把容器分成大小相等的两堆,则另一堆是否能用数组元素填满多少则是涉及到了背包最多能装多少的问题
本题其实就是尽量让石头分成重量相同的两堆,相撞之后剩下的石头最小,这样就化解成01背包问题了。
是不是感觉和昨天讲解的416. 分割等和子集 (opens new window)非常像了。
本题物品的重量为stones[i],物品的价值也为stones[i]。
对应着01背包里的物品重量weight[i]和 物品价值value[i]。
1.确定dp数组以及下标的含义
dp[j]表示容量(这里说容量更形象,其实就是重量)为j的背包,最多可以背最大重量为dp[j]。
可以回忆一下01背包中,dp[j]的含义,容量为j的背包,最多可以装的价值为 dp[j]。
2.确定递推公式
01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
本题则是:dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);
3.dp数组如何初始化
既然 dp[j]中的j表示容量,那么最大容量(重量)是多少呢,就是所有石头的重量和。
因为提示中给出1 <= stones.length <= 30,1 <= stones[i] <= 1000,所以最大重量就是30 * 1000 。
而我们要求的target其实只是最大重量的一半,所以dp数组开到15000大小就可以了
4.确定遍历顺序
在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中就已经说明:如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!
- 时间复杂度:O(m × n) , m是石头总重量(准确的说是总重量的一半),n为石头块数
- 空间复杂度:O(m)
class Solution {public int lastStoneWeightII(int[] stones) {int sum = 0;for (int i : stones) {sum += i;}int target = sum >> 1;//初始化dp数组int[] dp = new int[target + 1];//为什么要+1,因为涉及到背包重量为0的情况,要初始化,但是实际上数组元素是不包括这个的for (int i = 0; i < stones.length; i++) {//采用倒序for (int j = target; j >= stones[i]; j--) {//两种情况,要么放,要么不放dp[j] = Math.max(dp[j], dp[j - stones[i]] + stones[i]);}}return sum - 2 * dp[target];}
}
494.目标和
力扣题目链接(opens new window)
难度:中等
给定一个非负整数数组,a1, a2, ..., an, 和一个目标数,S。现在你有两个符号 + 和 -。对于数组中的任意一个整数,你都可以从 + 或 -中选择一个符号添加在前面。
返回可以使最终数组和为目标数 S 的所有添加符号的方法数。
示例:
- 输入:nums: [1, 1, 1, 1, 1], S: 3
- 输出:5
解释:
- -1+1+1+1+1 = 3
- +1-1+1+1+1 = 3
- +1+1-1+1+1 = 3
- +1+1+1-1+1 = 3
- +1+1+1+1-1 = 3
一共有5种方法让最终目标和为3。
大家重点理解 递推公式:dp[j] += dp[j - nums[i]],这个公式后面的提问 我们还会用到。
视频讲解:动态规划之背包问题,装满背包有多少种方法?| LeetCode:494.目标和_哔哩哔哩_bilibili
代码随想录
解题思路&代码
思路:
本题要如何使表达式结果为target,
既然为target,那么就一定有 left组合 - right组合 = target。
left + right = sum,而sum是固定的。right = sum - left
公式来了, left - (sum - left) = target 推导出 left = (target + sum)/2 。
target是固定的,sum是固定的,left就可以求出来。
此时问题就是在集合nums中找出和为left的组合
再回归到01背包问题,为什么是01背包呢?
因为每个物品(题目中的1)只用一次!
这次和之前遇到的背包问题不一样了,之前都是求容量为j的背包,最多能装多少。
本题则是装满有几种方法。其实这就是一个组合问题了。
1.确定dp数组以及下标的含义
dp[j] 表示:填满j(包括j)这么大容积的包,有dp[j]种方法
其实也可以使用二维dp数组来求解本题,dp[i][j]:使用 下标为[0, i]的nums[i]能够凑满j(包括j)这么大容量的包,有dp[i][j]种方法。
2.确定递推公式
有哪些来源可以推出dp[j]呢?
只要搞到nums[i],凑成dp[j]就有dp[j - nums[i]] 种方法。
例如:dp[j],j 为5,
- 已经有一个1(nums[i]) 的话,有 dp[4]种方法 凑成 容量为5的背包。
- 已经有一个2(nums[i]) 的话,有 dp[3]种方法 凑成 容量为5的背包。
- 已经有一个3(nums[i]) 的话,有 dp[2]中方法 凑成 容量为5的背包
- 已经有一个4(nums[i]) 的话,有 dp[1]中方法 凑成 容量为5的背包
- 已经有一个5 (nums[i])的话,有 dp[0]中方法 凑成 容量为5的背包
那么凑整dp[5]有多少方法呢,也就是把 所有的 dp[j - nums[i]] 累加起来。
所以求组合类问题的公式,都是类似这种:
dp[j] += dp[j - nums[i]]
3.dp数组如何初始化
从递推公式可以看出,在初始化的时候dp[0] 一定要初始化为1,因为dp[0]是在公式中一切递推结果的起源,如果dp[0]是0的话,递推结果将都是0。
如果数组[0] ,target = 0,那么 bagSize = (target + sum) / 2 = 0。 dp[0]也应该是1, 也就是说给数组里的元素 0 前面无论放加法还是减法,都是 1 种方法。
所以本题我们应该初始化 dp[0] 为 1。
4.确定遍历顺序
在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中,我们讲过对于01背包问题一维dp的遍历,nums放在外循环,target在内循环,且内循环倒序。
5.举例推导dp数组
输入:nums: [1, 1, 1, 1, 1], S: 3
bagSize = (S + sum) / 2 = (3 + 5) / 2 = 4
dp数组状态变化如下:
- 时间复杂度:O(n × m),n为正数个数,m为背包容量
- 空间复杂度:O(m),m为背包容量
class Solution {public int findTargetSumWays(int[] nums, int target) {int sum = 0;for (int i = 0; i < nums.length; i++) sum += nums[i];//如果target的绝对值大于sum,那么是没有方案的if (Math.abs(target) > sum) return 0;//如果(target+sum)除以2的余数不为0,也是没有方案的if ((target + sum) % 2 == 1) return 0;int bagSize = (target + sum) / 2;int[] dp = new int[bagSize + 1];dp[0] = 1;for (int i = 0; i < nums.length; i++) {for (int j = bagSize; j >= nums[i]; j--) {dp[j] += dp[j - nums[i]];}}return dp[bagSize];}
}
474.一和零
力扣题目链接(opens new window)
给你一个二进制字符串数组 strs 和两个整数 m 和 n 。
请你找出并返回 strs 的最大子集的大小,该子集中 最多 有 m 个 0 和 n 个 1 。
如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的 子集 。
示例 1:
-
输入:strs = ["10", "0001", "111001", "1", "0"], m = 5, n = 3
-
输出:4
-
解释:最多有 5 个 0 和 3 个 1 的最大子集是 {"10","0001","1","0"} ,因此答案是 4 。 其他满足题意但较小的子集包括 {"0001","1"} 和 {"10","1","0"} 。{"111001"} 不满足题意,因为它含 4 个 1 ,大于 n 的值 3 。
通过这道题目,大家先粗略了解, 01背包,完全背包,多重背包的区别,不过不用细扣,因为后面 对于 完全背包,多重背包 还有单独讲解。
视频讲解:动态规划之背包问题,装满这个背包最多用多少个物品?| LeetCode:474.一和零_哔哩哔哩_bilibili
代码随想录
解题思路&代码
思路:
本题并不是多重背包,再来看一下这个图,捋清几种背包的关系
多重背包是每个物品,数量不同的情况。
本题中strs 数组里的元素就是物品,每个物品都是一个!
而m 和 n相当于是一个背包,两个维度的背包。
理解成多重背包的同学主要是把m和n混淆为物品了,感觉这是不同数量的物品,所以以为是多重背包。
但本题其实是01背包问题!
只不过这个背包有两个维度,一个是m 一个是n,而不同长度的字符串就是不同大小的待装物品。
1.确定dp数组(dp table)以及下标的含义
dp[i][j]:最多有i个0和j个1的strs的最大子集的大小为dp[i][j]。
2.确定递推公式
dp[i][j] 可以由前一个strs里的字符串推导出来,strs里的字符串有zeroNum个0,oneNum个1。
dp[i][j] 就可以是 dp[i - zeroNum][j - oneNum] + 1。
然后我们在遍历的过程中,取dp[i][j]的最大值。
所以递推公式:dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);
此时大家可以回想一下01背包的递推公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
对比一下就会发现,字符串的zeroNum和oneNum相当于物品的重量(weight[i]),字符串本身的个数相当于物品的价值(value[i])。
这就是一个典型的01背包! 只不过物品的重量有了两个维度而已。
3.dp数组如何初始化
在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中已经讲解了,01背包的dp数组初始化为0就可以。
因为物品价值不会是负数,初始为0,保证递推的时候dp[i][j]不会被初始值覆盖。
4.确定遍历顺序
在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中,我们讲到了01背包为什么一定是外层for循环遍历物品,内层for循环遍历背包容量且从后向前遍历!
那么本题也是,物品就是strs里的字符串,背包容量就是题目描述中的m和n。
- 时间复杂度: O(kmn),k 为strs的长度
- 空间复杂度: O(mn)
class Solution {public int findMaxForm(String[] strs, int m, int n) {//dp[i][j]表示i个0和j个1时的最大子集int[][] dp = new int[m + 1][n + 1];int oneNum, zeroNum;for (String str : strs) {//正序遍历物品oneNum = 0;zeroNum = 0;for (char ch : str.toCharArray()) {if (ch == '0') {zeroNum++;} else {oneNum++;}}//倒序遍历背包容量for (int i = m; i >= zeroNum; i--) {for (int j = n; j >= oneNum; j--) {dp[i][j] = Math.max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);}}}return dp[m][n];}
}
相关文章:

零基础代码随想录【Day42】|| 1049. 最后一块石头的重量 II,494. 目标和,474.一和零
目录 DAY42 1049.最后一块石头的重量II 解题思路&代码 494.目标和 解题思路&代码 474.一和零 解题思路&代码 DAY42 1049.最后一块石头的重量II 力扣题目链接(opens new window) 题目难度:中等 有一堆石头,每块石头的重量都是正整…...

2024-5-24 石群电路-15
2024-5-24,星期五,22:15,天气:晴,心情:晴。今天最后一天上班,终于要放返校假啦,开心!!!!!!不过放假也不能耽误…...

功能测试:核心原理、挑战以及解决之道
在软件开发生命周期中,功能测试占据了至关重要的位置。它是确保软件应用按照既定的要求和规格运行的关键测试阶段。功能测试的目的在于验证软件的功能、行为和用户界面等是否达到了业务需求的标准。本文将深入探讨功能测试的概念,执行过程中可能遇到的挑…...

跨境电商赛道,云手机到底能不能化繁为简?
当下国内电商背景: 从零售额的数据来看:随着互联网的普及和消费者购物习惯的改变,国内电商市场规模持续扩大。据相关数据显示,网络消费亮点纷呈,一季度全国网上零售额达到了3.3万亿元,同比增长12.4%。这表…...

linux:信号深入理解
文章目录 1.信号的概念1.1基本概念1.2信号的处理基本概念1.3信号的发送与保存基本概念 2.信号的产生2.1信号产生的五种方式2.2信号遗留问题(core,temp等) 3.信号的保存3.1 信号阻塞3.2 信号特有类型 sigset_t3.3 信号集操作函数3.4 信号集操作函数的使用 4.信号的处理4.1 信号的…...

Android系统的/etc/mkshrc文件
/etc/mkshrc 文件是用于配置 mksh(MirBSD Korn Shell)环境的启动脚本。mksh 是 Android 默认使用的 shell,在 shell 启动时会读取并执行这个文件中的配置。以下是关于 /etc/mkshrc 文件的详细信息及其用途。 /etc/mkshrc 文件的作用 环境配…...

LeetCode199二叉树的右视图
题目描述 给定一个二叉树的 根节点 root,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值。 解析 这一题的关键其实就是找到怎么去得到当前是哪一层级,可以利用队列对二叉树进行层次遍历,但…...

JavaScript 基础
一 JavaScript 的书写形式 1.1 行内式 <input type"button" value"点我一下" onclick"alert(hello akai);" > 注意,JS 中的字符串常量可以用单引号表示,也可以使用双引号表示.HTML 中推荐使用双引号,JS 中推荐使用单引号(使用双引号容易…...

DOS学习-目录与文件应用操作经典案例-type
新书上架~👇全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我👆,收藏下次不迷路┗|`O′|┛ 嗷~~ 目录 一.前言 二.使用 三.案例 1. 查看文本文件内容 2. 同时查看多个文本文件内容 3. 合并文…...

QT教程-一,初识QT
目录 一,QT是什么?能够使用它做什么? 二,Qt 能够使用的语言 三,Qt主要用于什么领域? 四,Qt开发的软件 一,QT是什么?能够使用它做什么? Qt是一个跨平台的 C 开发库,主…...

SpringBoot搭建Eureka注册中心
系列文章目录 文章目录 系列文章目录前言前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通用,看懂了就去分享给你的码吧。 1、Spring-Cloud Euraka介绍 Spring-Cloud Euraka是Spring Cloud集合中一…...

day 38 435.无重叠区间 763.划分字母区间 56. 合并区间 738.单调递增的数字 968.监控二叉树
435.无重叠区间 思路 为了使区间尽可能的重叠所以排序来使区间尽量的重叠,使用左边界排序来统计重叠区间的个数与452. 用最少数量的箭引爆气球恰好相反。 代码 class Solution {public int eraseOverlapIntervals(int[][] intervals) {Arrays.sort(intervals,(a,…...

ssm/springoot养老院问诊服务预约系统_96316老年人服务系统
2.管理员: (1)登入注册页面:管理员进行操作时需要是已注册登入的 (2)权限管理:管理员登入后可以运用权限进行相应的操作管理。 (3)用户管理:对用户进行删除、…...

WordPress插件优化对提升性能有多大影响?
WordPress插件优化对提升性能的影响可以是非常显著的。插件是WordPress平台的一个重要组成部分,它们可以增强网站的功能和定制性。然而,如果插件没有经过优化,它们可能会成为网站性能的瓶颈。 通过优化插件,可以减少对服务器资源…...

Servlet的response对象
目录 HTTP响应报文协议 reponse继承体系 reponse的方法 响应行 public void setStatus(int sc) 响应头 public void setHeader(String name, String value) 响应体 public java.io.PrintWriter getWriter() public ServletOutputStream getOutputStream() 请求重定…...

Unity射击游戏开发教程:(20)增加护盾强度
在本文中,我们将增强护盾,使其在受到超过 1 次攻击后才会被禁用。 Player 脚本具有 Shield PowerUp 方法,我们需要调整盾牌在被摧毁之前可以承受的数量,因此我们将声明一个 int 变量来设置盾牌可以承受的击中数量。...

初识C语言——第二十八天
代码练习1: 用函数的方式实现9*9乘法表 void print_table(int n) {int i 0;int j 0;for (i 1; i< n; i){for (j 1; j< i; j){printf("%d*%d%-3d ", i, j, i * j);}printf("\n");}}int main() {int n 0;scanf("%d", &a…...

Android NDK系列(三)输入事件分发到Native层的流程
在Android NDK系列(一)手动搭建Native Project 创建的Native工程中,是可以接收输入事件的,只需在android_main中注册输入事件的处理函数,当触摸屏幕后,handleInputEvent函数便会调用,代码如下。 static int32_t handleInputEvent(struct android_app* app, AInputEvent…...

Kafka之【生产消息】
消息(Record) 在kafka中传递的数据我们称之为消息(message)或记录(record),所以Kafka发送数据前,需要将待发送的数据封装为指定的数据模型: 相关属性必须在构建数据模型时指定,其中…...

asp.net core接入prometheus
安装prometheus和Grafana 参考之前的文章->安装prometheus和Grafana教程 源代码 dotnet源代码 新建.net core7 web项目 修改Program.cs using Prometheus;namespace PrometheusStu01;public class Program {public static void Main(string[] args){var builder We…...

C++ 变量类型与转换
C 变量类型与转换 文章目录 C 变量类型与转换变量int_tsize_t与ssize_tpid_ttime_t typenametypeid关键字类型转换编译期类型转换std::static_cast注意事项运行时类型转换std::dynamic_cast 变量 int_t 它是通过typedef定义的,而不是一种新的数据类型。 - int8_t…...

【杂七杂八】Huawei Gt runner手表系统降级
文章目录 Step1:下载安装修改版华为运动与健康Step2:在APP里进行配置Step3:更新固件(时间会很长) 目前在使用用鸿蒙4 111版本的手表系统,但是感觉睡眠检测和运动心率检测一言难尽,于是想到是否能回退到以前的版本&…...

FMEA做不出来的原因究竟是什么?——FMEA软件
免费试用FMEA软件-免费版-SunFMEA FMEA(Failure Mode and Effects Analysis)即故障模式与影响分析,是一种旨在识别并预防潜在问题的方法。然而,尽管其重要性被广泛认知,但在实际应用中,却常常遇到FMEA难以…...

pandas ExcelWriter写excel报错openpyxl.utils.exceptions.IllegalCharacterError
一直使用pandas写excel,本次写的数据有大字段,每次写到该字段就报错,代码如下: with pd.ExcelWriter(r".\提数_20240523\tq_type3_doc.xlsx", engineopenpyxl) as writer: df.to_excel(writer,indexFalse, sheet_namesh…...

Golang创建文件夹
方法 package zdpgo_fileimport ("os" )// AddDir 创建文件夹 func AddDir(dir string) error {if !IsExist(dir) {return os.MkdirAll(dir, os.ModePerm)}return nil }测试 package zdpgo_fileimport "testing"func TestAddDir(t *testing.T) {data : […...

头歌OpenGauss数据库-I.复杂查询第5关:至少学了某位学生(Oliver)所学的全部课程的学生
本关任务:根据提供的表和数据,查询至少学了Oliver同学所学的全部课程的其他同学的信息(学号s_id,姓名`s_name)。 student表数据: s_ids_names_sex01Mia女02Riley男03Aria女04Lucas女05Oliver男06Caden男07Lily女08Jacob男course表数据: c_idc_namet_id01Chinese0202Math…...

【数据结构】哈夫曼树和哈夫曼编码
一、哈夫曼树 1.1 哈夫曼树的概念 给定一个序列,将序列中的所有元素作为叶子节点构建一棵二叉树,并使这棵树的带权路径长度最小,那么我们就得到了一棵哈夫曼树(又称最优二叉树) 接下来是名词解释: 权&a…...

深入探索微软Edge:领略新一代浏览器的无限可能
深入探索微软Edge:领略新一代浏览器的无限可能 在当今数字化时代,网络浏览器已经成为我们日常生活中不可或缺的一部分。而随着技术的不断进步,浏览器的功能和性能也在不断提升。微软Edge作为微软推出的全新一代浏览器,引领着浏览…...

JavaScript表达式和运算符
表达式 表达式一般由常量、变量、运算符、子表达式构成。最简单的表达式可以是一个简单的值。常量或变量。例:var a10 运算符 运算符一般用符号来表示,也有些使用关键字表示。运算符由3中类型 1.一元运算符:一个运算符能够结合一个操作数&…...

爬虫实训案例:中国大学排名
近一个月左右的时间学习爬虫,在用所积累的知识爬取了《中国大学排名》这个网站,爬取的内容虽然只是可见的文本,但对于初学者来说是一个很好的练习。在爬取的过程中,通过请求数据、解析内容、提取文本、存储数据等几个重要的内容入…...