机器学习实验 --- 逻辑回归
第1关:逻辑回归核心思想
任务描述
本关任务:根据本节课所学知识完成本关所设置的编程题
#encoding=utf8
import numpy as npdef sigmoid(t):'''完成sigmoid函数计算:param t: 负无穷到正无穷的实数:return: 转换后的概率值:可以考虑使用np.exp()函数'''#********** Begin **********#return 1.0/(1+np.exp(-t))#********** End **********#
第2关:逻辑回归的损失函数
任务描述
本关任务:根据本节课所学知识完成本关所设置的选择题。
第3关:梯度下降
任务描述
本关任务:用 Python 构建梯度下降算法,并求取目标函数最小值。
# -*- coding: utf-8 -*-import numpy as np
import warnings
warnings.filterwarnings("ignore")def gradient_descent(initial_theta,eta=0.05,n_iters=1000,epslion=1e-8):'''梯度下降:param initial_theta: 参数初始值,类型为float:param eta: 学习率,类型为float:param n_iters: 训练轮数,类型为int:param epslion: 容忍误差范围,类型为float:return: 训练后得到的参数'''# 请在此添加实现代码 ##********** Begin *********#theta = initial_thetai_iter = 0while i_iter < n_iters:gradient = 2*(theta-3)last_theta = thetatheta = theta - eta*gradientif(abs(theta-last_theta)<epslion):breaki_iter +=1return theta#********** End **********#
第4关:动手实现逻辑回归 - 癌细胞精准识别
任务描述
本关任务:使用逻辑回归算法建立一个模型,并通过梯度下降算法进行训练,得到一个能够准确对癌细胞进行识别的模型。
# -*- coding: utf-8 -*-import numpy as np
import warnings
warnings.filterwarnings("ignore")def sigmoid(x):'''sigmoid函数:param x: 转换前的输入:return: 转换后的概率'''return 1/(1+np.exp(-x))def fit(x,y,eta=1e-3,n_iters=10000):'''训练逻辑回归模型:param x: 训练集特征数据,类型为ndarray:param y: 训练集标签,类型为ndarray:param eta: 学习率,类型为float:param n_iters: 训练轮数,类型为int:return: 模型参数,类型为ndarray'''# 请在此添加实现代码 ##********** Begin *********#theta = np.zeros(x.shape[1])i_iter = 0while i_iter < n_iters:gradient = (sigmoid(x.dot(theta))-y).dot(x)theta = theta -eta*gradienti_iter += 1return theta#********** End **********#
第5关:手写数字识别
任务描述
本关任务:使用sklearn中的LogisticRegression类完成手写数字识别任务。
from sklearn.linear_model import LogisticRegressiondef digit_predict(train_image, train_label, test_image):'''实现功能:训练模型并输出预测结果:param train_sample: 包含多条训练样本的样本集,类型为ndarray,shape为[-1, 8, 8]:param train_label: 包含多条训练样本标签的标签集,类型为ndarray:param test_sample: 包含多条测试样本的测试集,类型为ndarry:return: test_sample对应的预测标签'''#************* Begin ************#flat_train_image = train_image.reshape((-1, 64))# 训练集标准化train_min = flat_train_image.min()train_max = flat_train_image.max()flat_train_image = (flat_train_image-train_min)/(train_max-train_min)# 测试集变形flat_test_image = test_image.reshape((-1, 64))# 测试集标准化test_min = flat_test_image.min()test_max = flat_test_image.max()flat_test_image = (flat_test_image - test_min) / (test_max - test_min)# 训练--预测rf = LogisticRegression(C=4.0)rf.fit(flat_train_image, train_label)return rf.predict(flat_test_image)#************* End **************#
相关文章:

机器学习实验 --- 逻辑回归
第1关:逻辑回归核心思想 任务描述 本关任务:根据本节课所学知识完成本关所设置的编程题 #encodingutf8 import numpy as npdef sigmoid(t):完成sigmoid函数计算:param t: 负无穷到正无穷的实数:return: 转换后的概率值:可以考虑使用np.exp()函数#*****…...

浅谈C++函数
目录 一、函数的概念二、调用函数的两个前提三、函数传参的三种形式四、函数返回类型 一、函数的概念 函数是C程序的基本模块,通常一个C程序由一个或多个函数组成。函数可以完成用户指定的任务,一般分为库函数和用户自定义的函数。函数由函数头和函数体…...

6.小程序页面布局 - 账单明细
文章目录 1. 6.小程序页面布局 - 账单明细1.1. 竞品1.2. 布局分析1.3. 布局demo1.4. 页面实现-头部1.5. 账单明细1.5.1. 账单明细-竞品分析1.5.2. 账单明细-实现1.5.2.1. 账单明细-实现-mock数据1.5.2.2. 每日收支数据的聚合整理1.5.2.3. 页面scroll-view 1.6. TODO 1. 6.小程序…...
记录ES7.X更新数据的低级错误
背景:新项目复用之前同事遗留下的方法 问题:ES跨索引更新数据错误 排查:复用同事的方法有问题,他直接使用ES别名更新数据导致,只有一个索引时无问题,当多个索引使用同一别名时会出现异常 解决࿱…...

【简单介绍下链表基础知识】
🎥博主:程序员不想YY啊 💫CSDN优质创作者,CSDN实力新星,CSDN博客专家 🤗点赞🎈收藏⭐再看💫养成习惯 ✨希望本文对您有所裨益,如有不足之处,欢迎在评论区提出…...
leetcode 2915.和为目标值的最长子序列的长度
思路:01背包 这个背包问题很经典了,但是这里涉及到一个问题,就是我们转化问题的时候发现,这个背包需要正好装满才行。这里我们把长度作为价值,也就是说每一个数的价值都是1。 我们需要把dp初始化为全部为负数&#x…...

欧拉函数、快速幂、扩展欧几里得算法、中国剩余定理和高斯消元
欧拉函数 给定 n 个正整数 ai,请你求出每个数的欧拉函数。 欧拉函数的定义1∼N 中与 N 互质的数的个数被称为欧拉函数,记为 ϕ(N)。 若在算数基本定理中,Np1a11p2a2…pmm,则:ϕ(N) Np1−1/p1p2−1/p2…pm−1/pm 输…...

自定义原生小程序顶部及获取胶囊信息
需求:我需要将某个文字或者按钮放置在小程序顶部位置 思路:根据获取到的顶部信息来定义我需要放的这个元素样式 * 这里我是定义某个指定页面 json:给指定页面的json中添加自定义设置 "navigationStyle": "custom" JS&am…...
yolov8推理由avi改为mp4
修改\ultralytics-main\ultralytics\engine\predictor.py,即可 # Ultralytics YOLO 🚀, AGPL-3.0 license """ Run prediction on images, videos, directories, globs, YouTube, webcam, streams, etc.Usage - sources:$ yolo modepred…...
Vue3设置缓存:storage.ts
在vue文件使用: import { Local,Session } from //utils/storage; // Local if (!Local.get(字段名)) Local.set(字段名, 字段的值);// Session Session.getToken()storage.ts文件: import Cookies from js-cookie;/*** window.localStorage 浏览器永…...

如何用AI工具提升日常工作效率,帮我们提速增效减负
昨天,coze海外版支持了GPT4o, 立马体验了下,速度杠杠的。 https://www.coze.com 支持chatGP和gemini模型,需要科学上网。国内 https://www.coze.cn支持语雀、KIMI模型。 这里回到正题, 如何用AI工具提升日常工作效率…...
C++: 优先级队列的模拟实现和deque
目录 一、优先级队列 1.1优先级队列 priority_queue介绍 1.2优先级队列的使用 1.3priority_queue的模拟实现 二、deque 2.1deque介绍 2.2deque的优缺点 2.3为什么选择deque作为stack和queue的底层默认容器 一、优先级队列 1.1优先级队列 priority_queue介绍 1.11 优先级队…...
C++ socket epoll IO多路复用
IO多路复用通常用于处理单进程高并发,在Linux中,一切皆文件,一个socket连接会对应一个文件描述符,在监听多个文件描述符的状态应用中epoll相对于select和poll效率更高 epoll本质是系统在内核维护了一颗红黑树,监听的文…...

缓存IO与直接IO
IO类型 缓存 I/O 缓存 I/O 又被称作标准 I/O,大多数文件系统的默认 I/O 操作都是缓存 I/O。在 Linux 的缓存 I/O 机制中,数据先从磁盘复制到内核空间的缓冲区,然后从内核空间缓冲区复制到应用程序的地址空间(用户空间࿰…...

输入输出(3)——C++的标准输入流
目录 一、cin 流 二、成员函数 get 获取一个字符 (一)无参数的get函数。 (二)有一个参数的get函数。 (三)有3个参数的get函数 (四)用成员函数 getline 函数读取一行字符 (五)用成员函数 read 读取一串字符 (六)istream 类…...
[力扣题解] 344. 反转字符串
题目:344. 反转字符串 思路 双指针法 代码 class Solution { public:void reverseString(vector<char>& s) {int i, j, temp;for(i 0, j s.size()-1; i < j; i, j--){temp s[j];s[j] s[i];s[i] temp;}} };...

找不到msvcr110.dll无法继续执行代码的原因分析及解决方法
在计算机使用过程中,我们经常会遇到一些错误提示,其中之一就是找不到msvcr110.dll文件。这个错误通常发生在运行某些程序或游戏时,系统无法找到所需的动态链接库文件。为了解决这个问题,下面我将介绍5种常见的解决方法。 一&#…...
深入理解数仓开发(一)数据技术篇之日志采集
前言 今天开始重新回顾电商数仓项目,结合《阿里巴巴大数据之路》和尚硅谷的《剑指大数据——企业级电商数据仓库项目实战 精华版》来进行第二次深入理解学习。之前第一次学习数仓,虽然尽量放慢速度力求深入理解,但是不可能一遍掌握࿰…...

Edge浏览器:重新定义现代网页浏览
引言 - Edge的起源与重生 Edge浏览器,作为Microsoft Windows标志性的互联网窗口,源起于1995年的Internet Explorer。在网络发展的浪潮中,IE曾是无可争议的霸主,但随着技术革新与用户需求的演变,它面临的竞争日益激烈。…...
【Linux】shell脚本忽略错误继续执行
在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...
spring:实例工厂方法获取bean
spring处理使用静态工厂方法获取bean实例,也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下: 定义实例工厂类(Java代码),定义实例工厂(xml),定义调用实例工厂ÿ…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
linux 下常用变更-8
1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...

基于Springboot+Vue的办公管理系统
角色: 管理员、员工 技术: 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能: 该办公管理系统是一个综合性的企业内部管理平台,旨在提升企业运营效率和员工管理水…...
【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验
Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...

【Post-process】【VBA】ETABS VBA FrameObj.GetNameList and write to EXCEL
ETABS API实战:导出框架元素数据到Excel 在结构工程师的日常工作中,经常需要从ETABS模型中提取框架元素信息进行后续分析。手动复制粘贴不仅耗时,还容易出错。今天我们来用简单的VBA代码实现自动化导出。 🎯 我们要实现什么? 一键点击,就能将ETABS中所有框架元素的基…...

JDK 17 序列化是怎么回事
如何序列化?其实很简单,就是根据每个类型,用工厂类调用。逐个完成。 没什么漂亮的代码,只有有效、稳定的代码。 代码中调用toJson toJson 代码 mapper.writeValueAsString ObjectMapper DefaultSerializerProvider 一堆实…...

表单设计器拖拽对象时添加属性
背景:因为项目需要。自写设计器。遇到的坑在此记录 使用的拖拽组件时vuedraggable。下面放上局部示例截图。 坑1。draggable标签在拖拽时可以获取到被拖拽的对象属性定义 要使用 :clone, 而不是clone。我想应该是因为draggable标签比较特。另外在使用**:clone时要将…...