机器学习实验 --- 逻辑回归
第1关:逻辑回归核心思想
任务描述
本关任务:根据本节课所学知识完成本关所设置的编程题
#encoding=utf8
import numpy as npdef sigmoid(t):'''完成sigmoid函数计算:param t: 负无穷到正无穷的实数:return: 转换后的概率值:可以考虑使用np.exp()函数'''#********** Begin **********#return 1.0/(1+np.exp(-t))#********** End **********#
第2关:逻辑回归的损失函数
任务描述
本关任务:根据本节课所学知识完成本关所设置的选择题。

第3关:梯度下降
任务描述
本关任务:用 Python 构建梯度下降算法,并求取目标函数最小值。
# -*- coding: utf-8 -*-import numpy as np
import warnings
warnings.filterwarnings("ignore")def gradient_descent(initial_theta,eta=0.05,n_iters=1000,epslion=1e-8):'''梯度下降:param initial_theta: 参数初始值,类型为float:param eta: 学习率,类型为float:param n_iters: 训练轮数,类型为int:param epslion: 容忍误差范围,类型为float:return: 训练后得到的参数'''# 请在此添加实现代码 ##********** Begin *********#theta = initial_thetai_iter = 0while i_iter < n_iters:gradient = 2*(theta-3)last_theta = thetatheta = theta - eta*gradientif(abs(theta-last_theta)<epslion):breaki_iter +=1return theta#********** End **********#
第4关:动手实现逻辑回归 - 癌细胞精准识别
任务描述
本关任务:使用逻辑回归算法建立一个模型,并通过梯度下降算法进行训练,得到一个能够准确对癌细胞进行识别的模型。
# -*- coding: utf-8 -*-import numpy as np
import warnings
warnings.filterwarnings("ignore")def sigmoid(x):'''sigmoid函数:param x: 转换前的输入:return: 转换后的概率'''return 1/(1+np.exp(-x))def fit(x,y,eta=1e-3,n_iters=10000):'''训练逻辑回归模型:param x: 训练集特征数据,类型为ndarray:param y: 训练集标签,类型为ndarray:param eta: 学习率,类型为float:param n_iters: 训练轮数,类型为int:return: 模型参数,类型为ndarray'''# 请在此添加实现代码 ##********** Begin *********#theta = np.zeros(x.shape[1])i_iter = 0while i_iter < n_iters:gradient = (sigmoid(x.dot(theta))-y).dot(x)theta = theta -eta*gradienti_iter += 1return theta#********** End **********#
第5关:手写数字识别
任务描述
本关任务:使用sklearn中的LogisticRegression类完成手写数字识别任务。
from sklearn.linear_model import LogisticRegressiondef digit_predict(train_image, train_label, test_image):'''实现功能:训练模型并输出预测结果:param train_sample: 包含多条训练样本的样本集,类型为ndarray,shape为[-1, 8, 8]:param train_label: 包含多条训练样本标签的标签集,类型为ndarray:param test_sample: 包含多条测试样本的测试集,类型为ndarry:return: test_sample对应的预测标签'''#************* Begin ************#flat_train_image = train_image.reshape((-1, 64))# 训练集标准化train_min = flat_train_image.min()train_max = flat_train_image.max()flat_train_image = (flat_train_image-train_min)/(train_max-train_min)# 测试集变形flat_test_image = test_image.reshape((-1, 64))# 测试集标准化test_min = flat_test_image.min()test_max = flat_test_image.max()flat_test_image = (flat_test_image - test_min) / (test_max - test_min)# 训练--预测rf = LogisticRegression(C=4.0)rf.fit(flat_train_image, train_label)return rf.predict(flat_test_image)#************* End **************#相关文章:
机器学习实验 --- 逻辑回归
第1关:逻辑回归核心思想 任务描述 本关任务:根据本节课所学知识完成本关所设置的编程题 #encodingutf8 import numpy as npdef sigmoid(t):完成sigmoid函数计算:param t: 负无穷到正无穷的实数:return: 转换后的概率值:可以考虑使用np.exp()函数#*****…...
浅谈C++函数
目录 一、函数的概念二、调用函数的两个前提三、函数传参的三种形式四、函数返回类型 一、函数的概念 函数是C程序的基本模块,通常一个C程序由一个或多个函数组成。函数可以完成用户指定的任务,一般分为库函数和用户自定义的函数。函数由函数头和函数体…...
6.小程序页面布局 - 账单明细
文章目录 1. 6.小程序页面布局 - 账单明细1.1. 竞品1.2. 布局分析1.3. 布局demo1.4. 页面实现-头部1.5. 账单明细1.5.1. 账单明细-竞品分析1.5.2. 账单明细-实现1.5.2.1. 账单明细-实现-mock数据1.5.2.2. 每日收支数据的聚合整理1.5.2.3. 页面scroll-view 1.6. TODO 1. 6.小程序…...
记录ES7.X更新数据的低级错误
背景:新项目复用之前同事遗留下的方法 问题:ES跨索引更新数据错误 排查:复用同事的方法有问题,他直接使用ES别名更新数据导致,只有一个索引时无问题,当多个索引使用同一别名时会出现异常 解决࿱…...
【简单介绍下链表基础知识】
🎥博主:程序员不想YY啊 💫CSDN优质创作者,CSDN实力新星,CSDN博客专家 🤗点赞🎈收藏⭐再看💫养成习惯 ✨希望本文对您有所裨益,如有不足之处,欢迎在评论区提出…...
leetcode 2915.和为目标值的最长子序列的长度
思路:01背包 这个背包问题很经典了,但是这里涉及到一个问题,就是我们转化问题的时候发现,这个背包需要正好装满才行。这里我们把长度作为价值,也就是说每一个数的价值都是1。 我们需要把dp初始化为全部为负数&#x…...
欧拉函数、快速幂、扩展欧几里得算法、中国剩余定理和高斯消元
欧拉函数 给定 n 个正整数 ai,请你求出每个数的欧拉函数。 欧拉函数的定义1∼N 中与 N 互质的数的个数被称为欧拉函数,记为 ϕ(N)。 若在算数基本定理中,Np1a11p2a2…pmm,则:ϕ(N) Np1−1/p1p2−1/p2…pm−1/pm 输…...
自定义原生小程序顶部及获取胶囊信息
需求:我需要将某个文字或者按钮放置在小程序顶部位置 思路:根据获取到的顶部信息来定义我需要放的这个元素样式 * 这里我是定义某个指定页面 json:给指定页面的json中添加自定义设置 "navigationStyle": "custom" JS&am…...
yolov8推理由avi改为mp4
修改\ultralytics-main\ultralytics\engine\predictor.py,即可 # Ultralytics YOLO 🚀, AGPL-3.0 license """ Run prediction on images, videos, directories, globs, YouTube, webcam, streams, etc.Usage - sources:$ yolo modepred…...
Vue3设置缓存:storage.ts
在vue文件使用: import { Local,Session } from //utils/storage; // Local if (!Local.get(字段名)) Local.set(字段名, 字段的值);// Session Session.getToken()storage.ts文件: import Cookies from js-cookie;/*** window.localStorage 浏览器永…...
如何用AI工具提升日常工作效率,帮我们提速增效减负
昨天,coze海外版支持了GPT4o, 立马体验了下,速度杠杠的。 https://www.coze.com 支持chatGP和gemini模型,需要科学上网。国内 https://www.coze.cn支持语雀、KIMI模型。 这里回到正题, 如何用AI工具提升日常工作效率…...
C++: 优先级队列的模拟实现和deque
目录 一、优先级队列 1.1优先级队列 priority_queue介绍 1.2优先级队列的使用 1.3priority_queue的模拟实现 二、deque 2.1deque介绍 2.2deque的优缺点 2.3为什么选择deque作为stack和queue的底层默认容器 一、优先级队列 1.1优先级队列 priority_queue介绍 1.11 优先级队…...
C++ socket epoll IO多路复用
IO多路复用通常用于处理单进程高并发,在Linux中,一切皆文件,一个socket连接会对应一个文件描述符,在监听多个文件描述符的状态应用中epoll相对于select和poll效率更高 epoll本质是系统在内核维护了一颗红黑树,监听的文…...
缓存IO与直接IO
IO类型 缓存 I/O 缓存 I/O 又被称作标准 I/O,大多数文件系统的默认 I/O 操作都是缓存 I/O。在 Linux 的缓存 I/O 机制中,数据先从磁盘复制到内核空间的缓冲区,然后从内核空间缓冲区复制到应用程序的地址空间(用户空间࿰…...
输入输出(3)——C++的标准输入流
目录 一、cin 流 二、成员函数 get 获取一个字符 (一)无参数的get函数。 (二)有一个参数的get函数。 (三)有3个参数的get函数 (四)用成员函数 getline 函数读取一行字符 (五)用成员函数 read 读取一串字符 (六)istream 类…...
[力扣题解] 344. 反转字符串
题目:344. 反转字符串 思路 双指针法 代码 class Solution { public:void reverseString(vector<char>& s) {int i, j, temp;for(i 0, j s.size()-1; i < j; i, j--){temp s[j];s[j] s[i];s[i] temp;}} };...
找不到msvcr110.dll无法继续执行代码的原因分析及解决方法
在计算机使用过程中,我们经常会遇到一些错误提示,其中之一就是找不到msvcr110.dll文件。这个错误通常发生在运行某些程序或游戏时,系统无法找到所需的动态链接库文件。为了解决这个问题,下面我将介绍5种常见的解决方法。 一&#…...
深入理解数仓开发(一)数据技术篇之日志采集
前言 今天开始重新回顾电商数仓项目,结合《阿里巴巴大数据之路》和尚硅谷的《剑指大数据——企业级电商数据仓库项目实战 精华版》来进行第二次深入理解学习。之前第一次学习数仓,虽然尽量放慢速度力求深入理解,但是不可能一遍掌握࿰…...
Edge浏览器:重新定义现代网页浏览
引言 - Edge的起源与重生 Edge浏览器,作为Microsoft Windows标志性的互联网窗口,源起于1995年的Internet Explorer。在网络发展的浪潮中,IE曾是无可争议的霸主,但随着技术革新与用户需求的演变,它面临的竞争日益激烈。…...
[Java恶补day16] 238.除自身以外数组的乘积
给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...
html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码
目录 一、👨🎓网站题目 二、✍️网站描述 三、📚网站介绍 四、🌐网站效果 五、🪓 代码实现 🧱HTML 六、🥇 如何让学习不再盲目 七、🎁更多干货 一、👨…...
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...
【Go语言基础【12】】指针:声明、取地址、解引用
文章目录 零、概述:指针 vs. 引用(类比其他语言)一、指针基础概念二、指针声明与初始化三、指针操作符1. &:取地址(拿到内存地址)2. *:解引用(拿到值) 四、空指针&am…...
论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing
Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...
QT开发技术【ffmpeg + QAudioOutput】音乐播放器
一、 介绍 使用ffmpeg 4.2.2 在数字化浪潮席卷全球的当下,音视频内容犹如璀璨繁星,点亮了人们的生活与工作。从短视频平台上令人捧腹的搞笑视频,到在线课堂中知识渊博的专家授课,再到影视平台上扣人心弦的高清大片,音…...
李沐--动手学深度学习--GRU
1.GRU从零开始实现 #9.1.2GRU从零开始实现 import torch from torch import nn from d2l import torch as d2l#首先读取 8.5节中使用的时间机器数据集 batch_size,num_steps 32,35 train_iter,vocab d2l.load_data_time_machine(batch_size,num_steps) #初始化模型参数 def …...
CppCon 2015 学习:Simple, Extensible Pattern Matching in C++14
什么是 Pattern Matching(模式匹配) ❝ 模式匹配就是一种“描述式”的写法,不需要你手动判断、提取数据,而是直接描述你希望的数据结构是什么样子,系统自动判断并提取。❞ 你给的定义拆解: ✴ Instead of …...
RFID推动新能源汽车零部件生产系统管理应用案例
RFID推动新能源汽车零部件生产系统管理应用案例 一、项目背景 新能源汽车零部件场景 在新能源汽车零部件生产领域,电子冷却水泵等关键部件的装配溯源需求日益增长。传统 RFID 溯源方案采用 “网关 RFID 读写头” 模式,存在单点位单独头溯源、网关布线…...
可下载旧版app屏蔽更新的app市场
软件介绍 手机用久了,app越来越臃肿,老手机卡顿成常态。这里给大家推荐个改善老手机使用体验的方法,还能帮我们卸载不需要的app。 手机现状 如今的app不断更新,看似在优化,实则内存占用越来越大,对手机性…...
