常用损失函数学习
损失函数(Loss Function),在机器学习和统计学中,是用来量化模型预测输出与真实结果之间差异的函数。简而言之,损失函数衡量了模型预测的好坏,目标是通过最小化这个函数来优化模型参数,从而提高预测准确性。下面是一些常用的损失函数及其应用场景:
1. 均方误差(Mean Squared Error, MSE)
- 理解:对于回归问题,MSE计算预测值与真实值之差的平方和的均值,能够放大较大误差的影响。
- 公式: L ( Y , Y ^ ) = 1 n ∑ i = 1 n ( y i − y ^ i ) 2 L(Y, \hat{Y}) = \frac{1}{n} \sum_{i=1}^{n}(y_i - \hat{y}_i)^2 L(Y,Y^)=n1i=1∑n(yi−y^i)2
- 场景:广泛用于连续值预测任务,如房价预测、股票价格预测等。
2. 平均绝对误差(Mean Absolute Error, MAE)
- 理解:与MSE类似,但取差值的绝对值,对异常值敏感性较低。
- 公式: L ( Y , Y ^ ) = 1 n ∑ i = 1 n ∣ y i − y ^ i ∣ L(Y, \hat{Y}) = \frac{1}{n} \sum_{i=1}^{n}|y_i - \hat{y}_i| L(Y,Y^)=n1i=1∑n∣yi−y^i∣
- 场景:同样适用于回归问题,特别是当希望模型对误差有更均匀的反应时。
3. 交叉熵损失(Cross-Entropy Loss)
- 理解:用于分类问题,特别是在神经网络中,衡量预测概率分布与实际类别标签的概率分布的差异。
- 公式(二分类问题,sigmoid激活函数): L ( y , p ) = − y log ( p ) − ( 1 − y ) log ( 1 − p ) L(y, p) = -y \log(p) - (1-y) \log(1-p) L(y,p)=−ylog(p)−(1−y)log(1−p)
- 场景:分类任务,如图像分类、文本分类等。
4. 逻辑斯谛损失(Logistic Loss)
- 理解:实际上是二元交叉熵损失的一种特例,常用于逻辑回归模型。
- 场景:与交叉熵损失类似,适用于二分类问题。
5. Hinge损失
- 理解:主要用于最大间隔分类器,如支持向量机(SVM),鼓励模型找到宽的分类边界。
- 公式: L ( y , y ^ ) = max ( 0 , 1 − y y ^ ) L(y, \hat{y}) = \max(0, 1 - y\hat{y}) L(y,y^)=max(0,1−yy^)
- 场景:适用于支持向量机等最大间隔分类问题。
6. Huber损失
- 理解:结合了MSE和MAE的优点,对离群点较为鲁棒,当误差较小时表现为平方损失,误差较大时变为线性损失。
- 公式:基于阈值 δ ( δ ) δ(\delta) δ(δ),当误差 ∣ y − y ^ ∣ ≤ δ |y-\hat{y}|≤δ ∣y−y^∣≤δ时, L = 1 2 ( y − y ^ ) 2 L=\frac{1}{2}(y-\hat{y})^2 L=21(y−y^)2;否则, L = δ ( ∣ y − y ^ ∣ − 1 2 δ ) L=\delta(|y-\hat{y}|-\frac{1}{2}\delta) L=δ(∣y−y^∣−21δ)
- 场景:适合包含较多离群值的数据集的回归问题。
选择原则:
选择损失函数时,需考虑任务类型(回归还是分类)、数据特性(如是否含有离群点)、模型训练的稳定性以及对误差的容忍度等因素。例如,在对预测误差的敏感性要求不高且数据可能存在噪声时,MAE可能是更好的选择;而在分类任务中,尤其是多分类或需要概率输出时,交叉熵损失通常是首选。
相关文章:
常用损失函数学习
损失函数(Loss Function),在机器学习和统计学中,是用来量化模型预测输出与真实结果之间差异的函数。简而言之,损失函数衡量了模型预测的好坏,目标是通过最小化这个函数来优化模型参数,从而提高预…...
判断视频moov的位置
前言 MP4文件由若干称为Atom(或称为box)的数据对象组成,每个Atom的起首为四个字节的数据长度(Big Endian)和四个字节的类型标识,数据长度和类型标志都可以扩展。Atom可以嵌套,即其数据域可以由…...
python安装依赖
创建 requirement.txt 文件并填充内容 flask2.0.0 pandas1.3.3 numpy1.21.2 安装模块 pip install -r requirement.txt...

如何利用GitHubAction来发布自己的Python软件包
我们开发的python软件包如果想发布到网上,可以让其他人通过pip install下载,一般是把软件包发布到PYPI平台。 PYPI准备 我们要现在pypi注册登录一下 文件组织架构 一般的python软件包的文件组织架构为包名文件夹__init__.py程序,包文件夹的…...
raspberry pi/orienge pi等arm架构硬件打包ros humble docker视觉及机器人开发镜像
raspberry pi/orienge pi等arm架构硬件打包ros humble docker开发镜像 文章目录 前言准备工作拉取镜像编写Dockerfile编译docker镜像启动镜像docker-compose文件编写总结前言 这篇文章主要用于定制化打包需要的docker镜像,由于ros1提供的镜像源是国外的很多软件无法更新,所以…...

springboot+mysql在线考试系统-计算机毕业设计源码82584
摘 要 信息化社会内需要与之针对性的信息获取途径,但是途径的扩展基本上为人们所努力的方向,由于站在的角度存在偏差,人们经常能够获得不同类型信息,这也是技术最为难以攻克的课题。针对在线考试等问题,对如何通过计算…...
LangChain - 建立代理
本文翻译整理自:Build an Agent https://python.langchain.com/v0.2/docs/tutorials/agents/ 文章目录 一、说明概念 二、定义工具1、TavilyAPI参考: 2、RetrieverAPI参考:API参考: 3、工具 三、使用语言模型四、创建代理五、运行…...

爬虫案例:有道翻译python逆向
pip install pip install requestspip install base64pip install pycrytodome tools 浏览器的开发者工具,重点使用断点,和调用堆栈 工具网站:https://curlconverter.com/ 简便请求发送信息 flow 根据网站信息,preview,respon…...

仅需一块 4GB 的 GPU ,就能运行开源大语言模型:Llama3 70B
最强的开源大语言模型 Llama3 已经发布一段时间了,一些盆友资源有限,私信询问是否可以使用 4GB 的 VRAM 在本地运行 Llama3 70B。 与 GPT-4 相比,Llama3 的性能如何?Llama3 使用了哪些关键的前沿技术使其变得如此强大?…...
一战成电失败,二战上岸复旦!
这个系列会邀请往届学长学姐进行经验分享~ 本篇是复旦大学957来自专业课134分上岸同学的经验分享。 经验分享 大家好,大伙能点进这个帖子倍感荣幸。 先说一下个人情况吧,鼠鼠本科武汉大学物院,总共四年混了四年,绩点低&#x…...

27寸2K显示器 - HKC G27H2
HKC G27H2是一款面向电竞市场的高性能显示器,以其2K分辨率和180Hz的刷新率作为主要卖点,旨在为玩家提供流畅而清晰的视觉体验。配备HDR 400技术和95% DCI-P3色域覆盖,这款显示器还支持升降旋转支架,为用户提供了高度的人体工程学适…...
编程实战:类C语法的编译型脚本解释器(七)语句
初级代码游戏的专栏介绍与文章目录-CSDN博客 我的github:codetoys,所有代码都将会位于ctfc库中。已经放入库中我会指出在库中的位置。 这些代码大部分以Linux为目标但部分代码是纯C的,可以在任何平台上使用。 系列入口: 编程实…...

实体-联系图
为了把用户的数据要求清楚、准确地描述出来,系统分析员通常建立一个概念性的数据模型(也称为信息模型)。概念性数据模型是一种面向问题的数据模型,是按照用户的观点对数据建立的模型。它描述了从用户角度看到的数据,它反映了用户的现实环境, 而且与在软件系统中的实现方法无关。…...

ROCm上来自Transformers的双向编码器表示(BERT)
14.8. 来自Transformers的双向编码器表示(BERT) — 动手学深度学习 2.0.0 documentation (d2l.ai) 代码 import torch from torch import nn from d2l import torch as d2l#save def get_tokens_and_segments(tokens_a, tokens_bNone):""&qu…...
期权课程之第一节【用生活的例子解释什么是期权】
1、用生活的例子解释什么是期权 期权的英文名也就叫Option【选择】,实际上期权本质也就是一种选择权。 买入资产的例子 假如你【买家】看上了一套老王的【卖家】房子,现价100W、但是目前手头比较紧、但是你又不想错过这个房子,你可以先给老…...

【YOLOv10训练教程】如何使用YOLOv10训练自己的数据集并且推理使用
《博主简介》 小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~ 👍感谢小伙伴们点赞、关注! 《------往期经典推…...

[windows系统安装/重装系统][step-4][番外篇-2]N卡驱动重装 |解决:开机几小时后电脑卡顿 | 后台自动运行了上千个Rundll32进程问题
现象 开机几小时后,电脑变卡,打开后台管理器都卡,后台管理去转圈圈一小会儿后看到后台进程上千个,好多个Rundll32进程 重启下运行会稍快 重启后运行快,后台管理器反应也快 打开后台管理器不卡(几小时后打…...

Redis开发实战
单机部署安装 服务端下载,安装,启动去官网下载最新的版本:http://redis.io/download ,这里用的是3.0.2解压后,进入解压好的文件夹redis的安装非常简单,因为已经有现成的Makefile文件,所以直接先…...

C++ | Leetcode C++题解之第112题路径总和
题目: 题解: class Solution { public:bool hasPathSum(TreeNode *root, int sum) {if (root nullptr) {return false;}if (root->left nullptr && root->right nullptr) {return sum root->val;}return hasPathSum(root->left…...
leetcode力扣 2024. 考试的最大困扰度
一位老师正在出一场由 n 道判断题构成的考试,每道题的答案为 true (用 ‘T’ 表示)或者 false (用 ‘F’ 表示)。老师想增加学生对自己做出答案的不确定性,方法是最大化有连续相同结果的题数。(…...

python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

【JVM】- 内存结构
引言 JVM:Java Virtual Machine 定义:Java虚拟机,Java二进制字节码的运行环境好处: 一次编写,到处运行自动内存管理,垃圾回收的功能数组下标越界检查(会抛异常,不会覆盖到其他代码…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
Spring Boot面试题精选汇总
🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...

Ascend NPU上适配Step-Audio模型
1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...
【JavaSE】绘图与事件入门学习笔记
-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...

图表类系列各种样式PPT模版分享
图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...