当前位置: 首页 > news >正文

蓝桥杯-暴力搜索BFS+DFS

九九乘法表挂毯

问题描述:

        在一个古老的城堡里,一位名为 Alex 的少年发现了一幅巨大的九九乘法表挂毯。挂毯被划分成了9x9的方格,每个方格上写着相应的乘积。Alex 想象自己站在数值为1的方格上,他的目标是到达数值为 81 的方格。然而,少年遵循着一项规则:他只能移动到数值为 1、81 或任意偶数的相邻方格上。城堡的图书管理员告诉他,只有找到最短路径到达目标,他才能解开挂毯的秘密。
        请你帮助 Alex计算,在遵循上述移动规则的情况下,他从1到81的最短路径有多少种可能。

输入格式
无。
输出格式
输出一个整数,表示从1到 81 的最短路径的可能数量。

题目分析:

        这道题深度的考验BFS和DFS的综合运用,可以作为考验自己是否对这两种算法熟悉的一道题去练练手,下方配py的题解,仅供参考。 

综合思路就是,先用BFS求出最短路径是多少,然后用DFS去求符合该步数的路径有多少条。

代码实现:

m=[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18],
[0, 3, 6, 9, 12, 15, 18, 21, 24, 27],
[0, 4, 8, 12, 16, 20, 24, 28, 32, 36],
[0, 5, 10, 15, 20, 25, 30, 35, 40, 45],
[0, 6, 12, 18, 24, 30, 36, 42, 48, 54],
[0, 7, 14, 21, 28, 35, 42, 49, 56, 63],
[0, 8, 16, 24, 32, 40, 48, 56, 64, 72],
[0, 9, 18, 27, 36, 45, 54, 63, 72, 81]]dirs=[[0,1],[0,-1],[-1,0],[1,0]] #四条路
def bfs(m):st,ed=[1,1],[9,9]stack=[[st,0]]while stack:curnode,step=stack.pop(0)print(curnode)if curnode==ed: return stepstep+=1for i in dirs:a0,a1=curnode[0]+i[0],curnode[1]+i[1]if 9>=a0>0 and 9>=a1>0 and (m[a0][a1] %2==0 or m[a0][a1]==81):newnode=[a0,a1]stack.append([newnode,step])m[a0][a1]=1
print(bfs(m))res=0
def dfs(x,y,key,step):global resif step>16: returnif key==81:res+=1returnelse:for dir in dirs:x0,y0=x+dir[0],y+dir[1]if 9>=x0>0 and 9>=y0>0 and (m[x0][y0]%2==0 or m[x0][y0]==81):v=m[x0][y0]dfs(x0,y0,v,step+1)
dfs(1,1,1,0)
print(res)

题目总结: 

这种题目主要考察对DFS和BFS两种搜索算法的理解和运用能力。所以要求我们必须掌握以下内容:

  1. 理解DFS和BFS的基本原理:DFS是深度优先搜索算法,从起始节点开始,沿着一条路径一直往下搜索直到无法继续为止,然后返回上一个节点继续搜索;BFS是广度优先搜索算法,从起始节点开始,先搜索所有相邻节点,再逐层向下搜索。

  2. 分析DFS和BFS的应用场景:DFS通常用于寻找所有可能的解或路径,适用于图的遍历、拓扑排序、连通性检测等问题;BFS通常用于求最短路径、最小步数等问题。

  3. 比较DFS和BFS的特点:DFS递归实现简单,但可能会无限循环;BFS借助队列实现,保证了最优解,但空间复杂度较高。

  4. 实际应用中如何选择DFS和BFS:根据具体问题特点选择合适的搜索算法,通常情况下,如果需要找到解的所有可能,可以使用DFS;如果要求最短路径或步数,可以使用BFS。

相关文章:

蓝桥杯-暴力搜索BFS+DFS

九九乘法表挂毯 问题描述: 在一个古老的城堡里,一位名为 Alex 的少年发现了一幅巨大的九九乘法表挂毯。挂毯被划分成了9x9的方格,每个方格上写着相应的乘积。Alex 想象自己站在数值为1的方格上,他的目标是到达数值为 81 的方格。…...

巧用count与count()

在C#中&#xff0c;talentInnoPfChains.Count() 和 talentInnoPfChains.Count 的性能差异主要取决于 talentInnoPfChains 的类型。这里有两种可能的情况&#xff1a; 如果 talentInnoPfChains 是一个实现了 ICollection<T> 接口的集合&#xff08;如 List<T>, Hash…...

MongoDB 覆盖索引查询:提升性能的完整指南

MongoDB 覆盖索引查询是一种优化数据库查询性能的技术&#xff0c;它通过创建适当的索引&#xff0c;使查询可以直接从索引中获取所需的数据&#xff0c;而无需访问实际的文档数据。这种方式可以减少磁盘 I/O 和内存消耗&#xff0c;提高查询性能。 基本语法 在 MongoDB 中&a…...

ECMAScript详解

ECMAScript&#xff08;简称ES&#xff09;是一种由Ecma国际&#xff08;前身为欧洲计算机制造商协会&#xff0c;European Computer Manufacturers Association&#xff09;通过ECMA-262标准化的脚本程序设计语言。以下是对ECMAScript的详细说明&#xff1a; 1. 定义与起源 …...

如何在Windows 10上对硬盘进行碎片整理?这里提供步骤

随着时间的推移&#xff0c;由于文件系统中的碎片&#xff0c;硬盘驱动器可能会开始以较低的效率运行。为了加快驱动器的速度&#xff0c;你可以使用内置工具在Windows 10中对其进行碎片整理和优化。方法如下。 什么是碎片整理 随着时间的推移&#xff0c;组成文件的数据块&a…...

科学高效备考AMC8和AMC10竞赛,吃透2000-2024年1850道真题和解析

多做真题&#xff0c;吃透真题和背后的知识点是备考AMC8、AMC10有效的方法之一&#xff0c;通过做真题&#xff0c;可以帮助孩子找到真实竞赛的感觉&#xff0c;而且更加贴近比赛的内容&#xff0c;可以通过真题查漏补缺&#xff0c;更有针对性的补齐知识的短板。 今天我们继续…...

SQL——SELECT相关的题目

目录 197、上升的温度 577、员工奖金 586、订单最多的客户 596、超过5名学生的课 610、判断三角形 620、有趣的电影 181、超过经理收入的员工 1179、重新格式化部门表&#xff08;行转列&#xff09; 1280、学生参加各科测试的次数 1068、产品销售分析I 1075、项目员工I …...

etcd集群部署

1.etcd介绍 1.1 什么是etcd etcd的官方定义如下: A distributed, reliable key-value store for the most critical data of distributed systemetcd是一个Go语言编写的分布式、高可用的一致性键值存储系统,用于提供可靠的分布式键值(key value)存储、配置共享和服务发现等…...

VBA_MF系列技术资料1-615

MF系列VBA技术资料1-615 为了让广大学员在VBA编程中有切实可行的思路及有效的提高自己的编程技巧&#xff0c;我参考大量的资料&#xff0c;并结合自己的经验总结了这份MF系列VBA技术综合资料&#xff0c;而且开放源码&#xff08;MF04除外&#xff09;&#xff0c;其中MF01-0…...

常用激活函数学习

常用激活函数及其应用 ReLU (Rectified Linear Unit) 公式: f ( x ) max ⁡ ( 0 , x ) f(x) \max(0, x) f(x)max(0,x)理解: 当输入值为正时&#xff0c;输出等于输入值&#xff1b;否则输出为0。ReLU函数简单且计算效率高&#xff0c;能有效缓解梯度消失问题&#xff0c;促进…...

html中被忽略的简单标签

1&#xff1a; alt的作用是在图片不能显示时的提示信息 <img src"https://img.xunfei.cn/mall/dev/ifly-mall-vip- service/business/vip/common/202404071019208761.jp" alt"提示信息" width"100px" height"100px" /> 2&#…...

Vue.Draggable:强大的Vue拖放组件技术探索

一、引言 随着前端技术的不断发展&#xff0c;拖放&#xff08;Drag-and-Drop&#xff09;功能已经成为许多Web应用不可或缺的一部分。Vue.js作为现代前端框架的佼佼者&#xff0c;为开发者提供了丰富的生态系统和强大的工具链。Vue.Draggable作为基于Sortable.js的Vue拖放组件…...

linux mail命令及其历史

一、【问题描述】 最近隔壁组有人把crontab删了&#xff0c;crontab这个命令有点反人类&#xff0c;它的参数特别容易误操作&#xff1a; crontab - 是删除计划表 crontab -e 是编辑&#xff0c;总之就是特别容易输入错误。 好在可以通过mail命令找回&#xff0c;但是mai…...

数据驱动(Data-Driven)和以数据为中心(Data-Centric)的区别

一、什么是数据驱动&#xff1f; 数据驱动&#xff08;Data-Driven&#xff09;是在管理科学领域经常提到的名词。数据驱动决策&#xff08;Data-Driven Decision Making&#xff0c;简称DDD&#xff09;是一种方法论&#xff0c;即在决策过程中主要依赖于数据分析和解释&…...

aosp14的分屏接口ISplitScreen接口获取方式更新-学员疑问答疑

背景&#xff1a; 有学员朋友在学习马哥的分屏pip自由窗口专题时候&#xff0c;做相关分屏做小桌面项目时候&#xff0c;因为原来课程版本是基于android 13进行的讲解的&#xff0c;但是现在公司已经开始逐渐进行相关的android 14的适配了&#xff0c;但是android 14这块相比a…...

定积分求解过程是否变限问题 以及当换元时注意事项

目录 定积分求解过程是否变限问题 文字理解&#xff1a; 实例理解&#xff1a; 易错点和易混点&#xff1a; 1&#xff1a;定积分中的换元指什么&#xff1f; 2&#xff1a; 不定积分中第一类换元法和第二类换元法的本质和区别 3&#xff1a; df(x) ----> df(x)这…...

保研机试算法训练个人记录笔记(七)

输入格式&#xff1a; 在第1 行给出不超过10^5 的正整数N, 即参赛&#xff5d;人数。随后N 行&#xff0c;每行给出一位参赛者的 信息和成绩&#xff0c;包括其所代表的学校的编号&#xff08;从1 开始连续编号&#xff09;及其比赛成绩&#xff08;百分制&#xff09;&#xf…...

【MySQL精通之路】SQL优化(1)-查询优化(23)-避免全表扫描

当MySQL使用全表扫描来解析查询时&#xff0c;EXPLAIN的输出在type列中显示ALL。 这种情况通常发生在以下情况下&#xff1a; 该表非常小&#xff0c;因此执行全表扫描比查找关键字更快。这对于少于10行且行长较短的表来说很常见。 对于索引列&#xff0c;ON或WHERE子句中没有…...

【Linux】写时拷贝技术COW (copy-on-write)

文章目录 Linux写时拷贝技术(copy-on-write)进程的概念进程的定义进程和程序的区别PCB的内部构成 程序是如何被加载变成进程的&#xff1f;写时复制&#xff08;Copy-On-Write, COW&#xff09;写时复制机制的原理写时拷贝的场景 fork与COWvfork与fork Linux写时拷贝技术(copy-…...

用python使用主成分分析数据

import pandas as pd #导入处理二维表格的库 import numpy as np #导入数值计算的库 from sklearn.preprocessing import StandardScaler #导入数据标准化模块 import matplotlib.pyplot as plt #导入画图的包 from sklearn.decomposition import PCA #导入主成…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

利用ngx_stream_return_module构建简易 TCP/UDP 响应网关

一、模块概述 ngx_stream_return_module 提供了一个极简的指令&#xff1a; return <value>;在收到客户端连接后&#xff0c;立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量&#xff08;如 $time_iso8601、$remote_addr 等&#xff09;&a…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

条件运算符

C中的三目运算符&#xff08;也称条件运算符&#xff0c;英文&#xff1a;ternary operator&#xff09;是一种简洁的条件选择语句&#xff0c;语法如下&#xff1a; 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true&#xff0c;则整个表达式的结果为“表达式1”…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)

本期内容并不是很难&#xff0c;相信大家会学的很愉快&#xff0c;当然对于有后端基础的朋友来说&#xff0c;本期内容更加容易了解&#xff0c;当然没有基础的也别担心&#xff0c;本期内容会详细解释有关内容 本期用到的软件&#xff1a;yakit&#xff08;因为经过之前好多期…...