当前位置: 首页 > news >正文

(蓝桥真题)剪格子(搜索+剪枝)

 样例1输入:

3 3
10 1 52
20 30 1
1 2 3

样例1输出:

3

样例2输入:

4 3
1 1 1 1
1 30 80 2
1 1 1 100

样例2输出:

10

分析:这道题目我们直接从(1,1)点开始进行dfs搜索即可,但是需要注意一点的是我们搜索的时候并不是沿着一条路径进行搜索,而是从当前已经走过的所有点中选出一个点然后沿着不同方向去搜索,这样我们就可以搜出所有的连通块,每次搜出一个连通块时还需要检测剩余的部分是否是一个连通块,那么检测剩余部分是否是一个连通块我们可以用并查集来实现。这样大体的步骤就实现了,接下来就是剪枝了,为了防止同样的状态被多次搜索,我们可以用哈希优化一下,随意设置一个哈希函数,然后求出每个连通块对应的哈希值然后进行去重即可,还有可以优化的一点就是我们每次尽可能选取值大的点进行搜索,这样得到目标值的连通块内的点就会尽可能小

需要说明的一点就是:由于蓝桥原题是没有明确说明两部分都必须连通的,所以也就没必要加上判断连通的那部分,而且他数据中都是一笔画形成的连通块,没有考虑周全,所以本代码在这两方面进行了优化,但会在洛谷上提交时会有一个点超时,那是因为本代码充分考虑到其余部分是否连通以及连通块形状任意这两个问题。

细节见代码:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<map>
#include<queue>
#include<vector>
#include<cmath>
#include<unordered_set>
using namespace std;
typedef pair<int,int> PII;
const int N=12;
const int P=13331;//P用于哈希
unordered_set<unsigned long long>st;
PII p[N*N];//存放当前已选的点
int a[N][N];
bool vis[N][N];
int fu[N*N],sum,ans,n,m;
int dx[4]={0,0,1,-1},dy[4]={1,-1,0,0};
bool cmp(PII x,PII y)
{return a[x.first][x.second]>a[y.first][y.second];
}
int find(int x)
{if(fu[x]!=x) return fu[x]=find(fu[x]);return x;
}
bool check_connect(int cnt)//检查剩余的n*m-cnt个点是否连通 
{for(int i=1;i<=n*m;i++) fu[i]=i;int t=n*m-cnt;for(int i=1;i<=n;i++)for(int j=1;j<=m;j++)if(!vis[i][j]){for(int k=0;k<4;k++){int nx=i+dx[k],ny=j+dy[k];if(nx<1||nx>n||ny<1||ny>m) continue;if(vis[nx][ny]) continue;int fx=find((i-1)*m+j),fy=find((nx-1)*m+ny);if(fx==fy) continue;t--;fu[fx]=fy;}}return t==1;
} 
bool check_exit()//检查当前连通块是否已经被搜索过,是的话返回true,否则返回false 
{unsigned long long t=0; for(int i=1;i<=n;i++)for(int j=1;j<=m;j++)if(vis[i][j])t=t*P+i*(P-3)+j*(P+102);if(st.count(t)) return true;//哈希去重st.insert(t);return false;
}
void dfs(int s,int cnt)//s和cnt分别代表当前已经选出来的数的和及个数 
{if(s==sum/2){if(check_connect(cnt)) ans=min(ans,cnt);//检查其他格子是否为一个连通块 return ;}if(s>sum/2||cnt>=ans) return ;//剪枝 PII next[N*N];//存放下一次搜索的点 int t=0;for(int i=1;i<=cnt;i++){int nowx=p[i].first,nowy=p[i].second;for(int j=0;j<4;j++){int nx=nowx+dx[j],ny=nowy+dy[j];if(nx<1||nx>n||ny<1||ny>m) continue;if(vis[nx][ny]) continue;next[++t]={nx,ny};}}sort(next+1,next+t+1,cmp);for(int i=1;i<=t;i++){if(next[i]==next[i-1]) continue;p[cnt+1]=next[i];vis[next[i].first][next[i].second]=true;if(!check_exit())//检查当前连通块是否已经被搜索过dfs(s+a[next[i].first][next[i].second],cnt+1);vis[next[i].first][next[i].second]=false;}
}int main()
{cin>>m>>n;for(int i=1;i<=n;i++)for(int j=1;j<=m;j++){scanf("%d",&a[i][j]);sum+=a[i][j];}if(sum&1){printf("0");return 0;}ans=0x3f3f3f3f;vis[1][1]=true;p[1]={1,1};dfs(a[1][1],1);if(ans==0x3f3f3f3f) ans=0;printf("%d",ans);return 0;
}

相关文章:

(蓝桥真题)剪格子(搜索+剪枝)

样例1输入&#xff1a; 3 3 10 1 52 20 30 1 1 2 3 样例1输出&#xff1a; 3 样例2输入&#xff1a; 4 3 1 1 1 1 1 30 80 2 1 1 1 100 样例2输出&#xff1a; 10 分析&#xff1a;这道题目我们直接从(1,1)点开始进行dfs搜索即可&#xff0c;但是需要注意一点的是我们搜…...

Kalman Filter in SLAM (3) ——Extended Kalman Filter (EKF, 扩展卡尔曼滤波)

文章目录1. 线性系统的 Kalman Filter 回顾2. Extended Kalman Filter 之 DR_CAN讲解笔记2.1. 非线性系统2.2. 非线性系统线性化2.2.1. 状态方程f(xk)f(x_k)f(xk​)在上一次的最优估计状态x^k−1\hat{x}_{k-1}x^k−1​处线性化2.2.2. 观测方程h(xk)h(x_k)h(xk​)在这一次的预测…...

关于vertical-align的几问

vertical-align属性可以给我讲解一下吗&#xff1f; 当使用table-cell布局或inline元素时&#xff0c;可以使用CSS的vertical-align属性控制元素的垂直对齐方式。该属性可应用于元素本身以及其父元素&#xff08;例如&#xff0c;td、th、tr和table&#xff09;。 以下是vertic…...

【拜占庭将军问题】这一计谋,可以让诸葛丞相兴复汉室

我们都知道&#xff0c;诸葛亮第一次北伐是最可能成功的&#xff0c;魏国没有防备&#xff0c;还策反了陇西&#xff0c;陇西有大量的马匹可以装备蜀国骑兵&#xff0c;可惜街亭一丢&#xff0c;那边就守不住了 当时我不在&#xff0c;只能作诗一首~ 如果穿越过去&#xff0c;…...

【Linux】 -- make/Makefile

目录 Linux项目自动化构建工具 – make/Makefile 背景 依赖关系和依赖方法 多文件编译 项目清理 make原理 Linux项目自动化构建工具 – make/Makefile 背景 一个工程的源文件不计其数 按照其类型、功能、模块分别放在若干个目录当中 Makefile定义了一系列的规则来指定&…...

Forter 对支付服务商应对欺诈的四个建议和Gartner的两个关键结论

Gartner新版2023年度《线上欺诈检测市场指南》发布恰逢其时&#xff0d;企业正面临来自专业黑产和欺诈者与日俱增的压力。而在2023年&#xff0c;许多商户将调整反欺诈策略&#xff0c;对拒付率和转化率进行更严格的监测&#xff0c;以最大限度减少损失并增加营收。以下是Gartn…...

ANR系列(二)——ANR监听方案之IdleHandler

前言 关于IdleHandler&#xff0c;比较多同学错误地认为&#xff0c;这个Handler的作用是主线程空闲状态时才执行它&#xff0c;那么用它做一些耗时操作也没所谓。可是IdleHandler在主线程的MessageQueue中&#xff0c;执行queueIdle()默认当然也是执行在主线程中的&#xff0…...

数学小课堂:数学和自然科学的关系(数学方法,让自然科学变成科学体系。)

文章目录 引言I 数学方法,让自然科学变成科学体系。1.1 天文学1.2 博物学1.3 化学1.4 医药学1.5 物理学II 自然科学的升华过程III 数学方法的意义引言 19世纪初,英国人把采用实验的方法,系统地构造和组织知识,解释和预测自然的学问称为科学。 科学研究的是自然现象和自然…...

[蓝桥杯 2020 省 A1] 分配口罩

思路比较容易想到&#xff0c;因为口罩全部只有15批&#xff0c;因此直接暴力dfs搜索即可 //dfs #include<bits/stdc.h> using namespace std; int ans 9999; int num[] {9090400, 8499400, 5926800, 8547000, 4958200, 4422600, 5751200, 4175600, 6309600, 5865200, …...

第五章:C语言数据结构与算法之双向带头循环链表

系列文章目录 文章目录系列文章目录前言一、哨兵位的头节点二、双向链表的结点三、接口函数的实现1、创建结点2、初始化3、尾插与尾删4、头插与头删5、打印6、查找7、随机插入与随机删除8、判空、长度与销毁四、顺序表和链表的对比1. 不同点2. 优缺点五、缓存命中1、缓存2、缓存…...

一文带你了解,前端模块化那些事儿

文章目录前端模块化省流&#xff1a;chatGPT 总结一、参考资料二、发展历史1.无模块化引出的问题:横向拓展2.IIFE3.Commonjs(cjs)4.AMD引出的问题&#xff1a;5.CMD6.UMD7.ESM往期精彩文章前端模块化 省流&#xff1a;chatGPT 总结 该文章主要讲述了前端模块化的发展历史和各个…...

(六十五)大白话设计索引的时候,我们一般要考虑哪些因素呢?(中)

今天我们继续来说一下&#xff0c;在设计索引的时候要考虑哪些因素。之前已经说了&#xff0c;你设计的索引最好是让你的各个where、order by和group by后面跟的字段都是联合索引的最左侧开始的部分字段&#xff0c;这样他们都能用上索引。 但是在设计索引的时候还得考虑其他的…...

Spring事务管理

文章目录1 事务1.1 需求1.2 原因分析1.3 错误解决1.4 yml配置文件中开启事务管理日志1 事务 1.1 需求 当部门解散了不仅需要把部门信息删除了&#xff0c;还需要把该部门下的员工数据也删除了。可当在删除员工数据出现异常时&#xff0c;就不会执行删除员工操作&#xff0c;出…...

数字化工厂装配线生产管理看板系统

电力企业业务复杂&#xff0c;组织结构复杂&#xff0c;不同的业务数据&#xff0c;管理要求也不尽相同。生产管理看板系统针对制造企业的生产应用而开发&#xff0c;能够帮助企业建立一个规范准确即时的生产数据库。企业现状&#xff1a;1、计划不清晰&#xff1a;生产计划不能…...

vxe-grid 全局自定义filter过滤器,支持字典过滤

一、vxe-table的全局筛选器filters的实现 官网例子&#xff1a;https://vxetable.cn/#/table/renderer/filter 进入之后&#xff1a;我们可以参照例子自行实现&#xff0c;也可以下载它的源码&#xff0c;进行调整 下载好后并解压&#xff0c;用vscode将解压后的文件打开。全局…...

ECharts 环形图组件封装

一、ECharts引入1.安装echarts包npm install echarts --save2.引入echarts这里就演示全局引入了&#xff0c;挂载到vue全局&#xff0c;后面使用时&#xff0c;直接使用 $echartsimport * as echarts from echarts Vue.prototype.$echarts echarts二、写echarts组件这里演示环…...

c++ 怎么调用python 提供的函数接口

在 C 中调用 Python 函数有多种方法&#xff0c;以下是其中的两种常见方法&#xff1a;使用 Python/C APIPython 提供了 C/C API&#xff0c;可以通过该 API 在 C 中调用 Python 函数。使用这种方法&#xff0c;需要先将 Python 解释器嵌入到 C 代码中&#xff0c;然后可以通过…...

【动态规划】背包问题(01背包,完全背包)

Halo&#xff0c;这里是Ppeua。平时主要更新C语言&#xff0c;C&#xff0c;数据结构算法......感兴趣就关注我吧&#xff01;你定不会失望。 &#x1f308;个人主页&#xff1a;主页链接 &#x1f308;算法专栏&#xff1a;专栏链接 我会一直往里填充内容哒&#xff01; &…...

记录 UE5 完全重新构建 UE C++项目

不知道搞了什么&#xff0c;C项目的实时代码编译罢工了&#xff0c;搞了半天都修不好&#xff0c;只能又重建了 UE5 版本为 v5.1.1 删除以下文件夹 /Binaries /Intermediate /SavedBinaries 文件夹是编译后的模块 Intermediate 文件夹里是中间层的C代码&#xff0c;完全由ue…...

java版云HIS系统源码 微服务架构支持VUE

云his系统源码 一个好的HIS系统&#xff0c;要具有开放性&#xff0c;便于扩展升级&#xff0c;增加新的功能模块&#xff0c;支撑好医院的业务的拓展&#xff0c;而且可以反过来给医院赋能&#xff0c;最终向更多的患者提供更好地服务。 私信了解更多&#xff01; 本套基于…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天&#xff0c;再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至&#xff0c;这不仅是开发者的盛宴&#xff0c;更是全球数亿苹果用户翘首以盼的科技春晚。今年&#xff0c;苹果依旧为我们带来了全家桶式的系统更新&#xff0c;包括 iOS 26、iPadOS 26…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log&#xff0c;共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题&#xff0c;不能使用ELK只能使用…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

LeetCode - 199. 二叉树的右视图

题目 199. 二叉树的右视图 - 力扣&#xff08;LeetCode&#xff09; 思路 右视图是指从树的右侧看&#xff0c;对于每一层&#xff0c;只能看到该层最右边的节点。实现思路是&#xff1a; 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

Docker 本地安装 mysql 数据库

Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker &#xff1b;并安装。 基础操作不再赘述。 打开 macOS 终端&#xff0c;开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...

并发编程 - go版

1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程&#xff0c;系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...

uniapp 开发ios, xcode 提交app store connect 和 testflight内测

uniapp 中配置 配置manifest 文档&#xff1a;manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号&#xff1a;4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...

6个月Python学习计划 Day 16 - 面向对象编程(OOP)基础

第三周 Day 3 &#x1f3af; 今日目标 理解类&#xff08;class&#xff09;和对象&#xff08;object&#xff09;的关系学会定义类的属性、方法和构造函数&#xff08;init&#xff09;掌握对象的创建与使用初识封装、继承和多态的基本概念&#xff08;预告&#xff09; &a…...

如何配置一个sql server使得其它用户可以通过excel odbc获取数据

要让其他用户通过 Excel 使用 ODBC 连接到 SQL Server 获取数据&#xff0c;你需要完成以下配置步骤&#xff1a; ✅ 一、在 SQL Server 端配置&#xff08;服务器设置&#xff09; 1. 启用 TCP/IP 协议 打开 “SQL Server 配置管理器”。导航到&#xff1a;SQL Server 网络配…...

rknn toolkit2搭建和推理

安装Miniconda Miniconda - Anaconda Miniconda 选择一个 新的 版本 &#xff0c;不用和RKNN的python版本保持一致 使用 ./xxx.sh进行安装 下面配置一下载源 # 清华大学源&#xff08;最常用&#xff09; conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...