sklearn线性回归--岭回归
sklearn线性回归--岭回归
岭回归也是一种用于回归的线性模型,因此它的预测公式与普通最小二乘法相同。但在岭回归中,对系数(w)的选择不仅要在训练数据上得到好的预测结果,而且还要拟合附加约束,使系数尽量小。换句话说,w的所有元素都应接近于0。直观上来看,这意味着每个特征对输出的影响应尽可能小(即斜率很小),同时仍给出很好地预测结果。这种约束就是正则化。正则化是指对模型做显示约束,以避免过拟合。岭回归用到的这种被称为L2正则化。下面来看一下岭回归对波士顿房价数据集的效果如何(该数据集的介绍见链接: link):

由上图可以看出,Ridge模型在训练集上的分数要低于LinearRegression,但在测试集上的分数更高。线性回归对数据存在过拟合。Ridge是一种约束更强的模型,所以更不容易过拟合。复杂度更小的模型意味着在训练集上的性能更差,但泛化性能更好。由于我们只对泛化性能感兴趣,所以应该选择Ridge而不是LinearRegression模型。
Ridge模型在模型的简单性(系数都接近于0)与训练集性能之间做出权衡。简单性和训练集性能二者对于模型的重要程度可以由用户通过设置alpha参数来指定。在前面的例子中,我们用的是默认参数alpha=1.0。但没有理由认为这会给出最佳权衡。alpha的最佳设定值取决于用到的具体数据集。增大alpha会使得系数更加趋向于0,从而降低训练集性能,但可能会提高泛化性能。例如:

减小alpha可以让系数受到的限制更小。对于非常小的alpha值(比如0.1),系数几乎没有受到限制,我们得到一个与LinearRegression类似的模型。
相关文章:
sklearn线性回归--岭回归
sklearn线性回归--岭回归 岭回归也是一种用于回归的线性模型,因此它的预测公式与普通最小二乘法相同。但在岭回归中,对系数(w)的选择不仅要在训练数据上得到好的预测结果,而且还要拟合附加约束,使系数尽量小…...
三十一、openlayers官网示例Draw Features解析——在地图上自定义绘制点、线、多边形、圆形并获取图形数据
官网demo地址: Draw Features 先初始化地图,准备一个空的矢量图层,用于显示绘制的图形。 initLayers() {const raster new TileLayer({source: new XYZ({url: "https://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/…...
医疗科技:UWB模块为智能医疗设备带来的变革
随着医疗科技的不断发展和人们健康意识的提高,智能医疗设备的应用越来越广泛。超宽带(UWB)技术作为一种新兴的定位技术,正在引领着智能医疗设备的变革。UWB模块作为UWB技术的核心组成部分,在智能医疗设备中发挥着越来越…...
Java面试题大全(从基础到框架,中间件,持续更新~~~)
从Java基础到数据库,Spring,MyBatis,消息中间件,微服务解决全部Java面试过程中的问题。(持续更新~~) Java基础 2024最新Java面试题——java基础 MySQL基础 mysql基础知识——适合不太熟悉数据库知识的小…...
零知识证明在隐私保护和身份验证中的应用
PrimiHub一款由密码学专家团队打造的开源隐私计算平台,专注于分享数据安全、密码学、联邦学习、同态加密等隐私计算领域的技术和内容。 隐私保护和身份验证是现代社会中的关键问题,尤其是在数字化时代。零知识证明(Zero-Knowledge Proofs&…...
15.微信小程序之async-validator 基本使用
async-validator是一个基于 JavaScript 的表单验证库,支持异步验证规则和自定义验证规则 主流的 UI 组件库 Ant-design 和 Element中的表单验证都是基于 async-validator 使用 async-validator 可以方便地构建表单验证逻辑,使得错误提示信息更加友好和…...
元宇宙vr科普馆场景制作引领行业潮流
在这个数字化高速发展的时代,北京3D元宇宙场景在线制作以其独特的优势,成为了行业内的创新引领者。它能够快速完成空间设计,根据您的个性化需求,轻松设置布局、灯光、音效以及互动元素等,为您打造出一个更加真实、丰富…...
kotlin基础之高阶函数
Kotlin中的高阶函数、内联函数以及noinline和crossinline关键字是函数式编程中的重要概念。下面我将逐一解释这些概念的定义、实现原理、使用场景以及noinline和crossinline关键字的具体用法。 高阶函数 定义:高阶函数是接受一个或多个函数作为参数,或…...
【Python音视频技术】用moviepy实现图文成片功能
今天上班的时候看到有人群里问 图文成片怎么实现。 临时给我提供一点写作的灵感,趁着下班写一篇。这里用到 python的moviepy库, 之前文章介绍过。 大体思路:假定有4张图片,每张图片将在视频中展示2秒钟,并且图片会按照…...
【Linux】权限的理解之权限掩码(umask)
目录 前言 一、利用八进制数值表示文件或目录的权限属性 二、系统默认的权限掩码和权限掩码的作用原理 三、分析权限掩码改变文件或目录的权限属性 前言 权限掩码是由4个数字组合而成的,默认的第一位数字是0;后三位数字分别由八进制位数字组成。权限…...
UVa1466/LA4849 String Phone
UVa1466/LA4849 String Phone 题目链接题意分析AC 代码 题目链接 本题是2010年icpc亚洲区域赛大田赛区的G题 题意 平面网格上有n(n≤3000)个单元格,各代表一个重要的建筑物。为了保证建筑物的安全,警察署给每个建筑物派了一名警察…...
使用Word表格数据快速创建图表
实例需求:Word的表格如下所示,标题行有合并单元格。 现在需要根据上述表格数据,在Word中创建如下柱图。如果数据在Excel之中,那么创建这个图并不复杂,但是Word中就没用那么简单了,虽然Word中可以插入图表&a…...
JAVA面试题大全(十三)
1、Mybatis 中 #{}和 ${}的区别是什么? 在 MyBatis 中,#{} 和 ${} 是两种用于参数绑定的方式,它们之间的主要区别在于数据处理的方式和 SQL 注入的风险。 #{}:预编译处理 #{} 用于预编译处理,MyBatis 会为其生成 Prep…...
搜维尔科技:第九届元宇宙数字人设计大赛入围作品名单
随着第九届元宇宙数字人设计大赛渐近尾声,各院校提交的数字人作品已陆续完成评分统计汇总工作!现将入围名单公布,请入围团队尽可能到场参加大赛颁奖典礼,具体获奖名次将在颁奖典礼中现场公布! 颁奖典礼时间、地点&…...
SMB工具横向移动
一. SMB工具介绍和使用 1.介绍 2013年的Defcon上,就引入了smbexec,后续 smbexec 被 Impacket 进一步完善了。在Impacket中支持明文认证,NTLM认证,Aeskey认证等方式! 2. 使用方法 命令: smbexec.exe 用户…...
cesuim
new Cesium.Color(255,255,0,1), //颜色 Math.PI/2color: Cesium.Color.fromCssColorString("#f40"), //16进制颜色初始化地球 import * as Cesium from "cesium";import { onMounted } from "vue"; onMounted(() > {Cesium.Ion.defaultAcc…...
2023、2024国赛web复现wp
2023 Unzip 类型:任意文件上传漏洞 主要知识点:软链接 随便上传一个一句话木马文件,得到一串php代码 根据代码上传zip文件发现进入后还是此页面 代码审计: <?php error_reporting(0); highlight_file(__FILE__);$finfo fin…...
day34 贪心算法 455.分发饼干 376. 摆动序列
贪心算法理论基础 贪心的本质是选择每一阶段的局部最优,从而达到全局最优。 贪心一般解题步骤(贪心无套路): 将问题分解为若干个子问题找出适合的贪心策略求解每一个子问题的最优解将局部最优解堆叠成全局最优解 455.分发饼干 …...
养老院管理系统基于springboot的养老院管理系统java项目
文章目录 养老院管理系统一、项目演示二、项目介绍三、系统部分功能截图四、部分代码展示五、底部获取项目源码(9.9¥带走) 养老院管理系统 一、项目演示 养老院管理系统 二、项目介绍 基于springboot的养老院管理系统 角色:超级…...
跳台阶扩展问题
题目链接 f(1) 1f(2) 1 1 2f(3) 1 2 1 4f(4) 1 2 4 1 8 所以 f(n) 2 n − 1 ^{n-1} n−1 import java.util.Scanner;public class Solution {public int jumpFloorII(int target) {return 1 << (target - 1);} }...
MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密
在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...
【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...
MFC 抛体运动模拟:常见问题解决与界面美化
在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...
jmeter聚合报告中参数详解
sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample(样本数) 表示测试中发送的请求数量,即测试执行了多少次请求。 单位,以个或者次数表示。 示例:…...
从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践
作者:吴岐诗,杭银消费金融大数据应用开发工程师 本文整理自杭银消费金融大数据应用开发工程师在StarRocks Summit Asia 2024的分享 引言:融合数据湖与数仓的创新之路 在数字金融时代,数据已成为金融机构的核心竞争力。杭银消费金…...
Caliper 负载(Workload)详细解析
Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...
阿里云Ubuntu 22.04 64位搭建Flask流程(亲测)
cd /home 进入home盘 安装虚拟环境: 1、安装virtualenv pip install virtualenv 2.创建新的虚拟环境: virtualenv myenv 3、激活虚拟环境(激活环境可以在当前环境下安装包) source myenv/bin/activate 此时,终端…...
云安全与网络安全:核心区别与协同作用解析
在数字化转型的浪潮中,云安全与网络安全作为信息安全的两大支柱,常被混淆但本质不同。本文将从概念、责任分工、技术手段、威胁类型等维度深入解析两者的差异,并探讨它们的协同作用。 一、核心区别 定义与范围 网络安全:聚焦于保…...
相关类相关的可视化图像总结
目录 一、散点图 二、气泡图 三、相关图 四、热力图 五、二维密度图 六、多模态二维密度图 七、雷达图 八、桑基图 九、总结 一、散点图 特点 通过点的位置展示两个连续变量之间的关系,可直观判断线性相关、非线性相关或无相关关系,点的分布密…...
