基于文本来推荐相似酒店
基于文本来推荐相似酒店
查看数据集基本信息
import pandas as pd
import numpy as np
from nltk.corpus import stopwords
from sklearn.metrics.pairwise import linear_kernel
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
import re
import random
import cufflinks
import cufflinks
from plotly.offline import iplot
df=pd.read_csv("Seattle_Hotels.csv",encoding="latin-1")
df.head()
| name | address | desc | |
|---|---|---|---|
| 0 | Hilton Garden Seattle Downtown | 1821 Boren Avenue, Seattle Washington 98101 USA | Located on the southern tip of Lake Union, the... |
| 1 | Sheraton Grand Seattle | 1400 6th Avenue, Seattle, Washington 98101 USA | Located in the city's vibrant core, the Sherat... |
| 2 | Crowne Plaza Seattle Downtown | 1113 6th Ave, Seattle, WA 98101 | Located in the heart of downtown Seattle, the ... |
| 3 | Kimpton Hotel Monaco Seattle | 1101 4th Ave, Seattle, WA98101 | What?s near our hotel downtown Seattle locatio... |
| 4 | The Westin Seattle | 1900 5th Avenue, Seattle, Washington 98101 USA | Situated amid incredible shopping and iconic a... |
df.shape
(152, 3)
df['desc'][0]
"Located on the southern tip of Lake Union, the Hilton Garden Inn Seattle Downtown hotel is perfectly located for business and leisure. \nThe neighborhood is home to numerous major international companies including Amazon, Google and the Bill & Melinda Gates Foundation. A wealth of eclectic restaurants and bars make this area of Seattle one of the most sought out by locals and visitors. Our proximity to Lake Union allows visitors to take in some of the Pacific Northwest's majestic scenery and enjoy outdoor activities like kayaking and sailing. over 2,000 sq. ft. of versatile space and a complimentary business center. State-of-the-art A/V technology and our helpful staff will guarantee your conference, cocktail reception or wedding is a success. Refresh in the sparkling saltwater pool, or energize with the latest equipment in the 24-hour fitness center. Tastefully decorated and flooded with natural light, our guest rooms and suites offer everything you need to relax and stay productive. Unwind in the bar, and enjoy American cuisine for breakfast, lunch and dinner in our restaurant. The 24-hour Pavilion Pantry? stocks a variety of snacks, drinks and sundries."
查看酒店描述中主要介绍信息
vec=CountVectorizer().fit(df['desc'])
vec=CountVectorizer().fit(df['desc'])
bag_of_words=vec.transform(df['desc'])
sum_words=bag_of_words.sum(axis=0)
words_freq=[(word,sum_words[0,idx]) for word,idx in vec.vocabulary_.items()]
sum_words=sorted(words_freq,key= lambda x: x[1],reverse=True)
sum_words[1:10]
[('and', 1062),('of', 536),('seattle', 533),('to', 471),('in', 449),('our', 359),('you', 304),('hotel', 295),('with', 280)]
bag_of_words=vec.transform(df['desc'])
bag_of_words.shape
(152, 3200)
bag_of_words.toarray()
array([[0, 1, 0, ..., 0, 0, 0],[0, 0, 0, ..., 0, 0, 0],[0, 0, 0, ..., 0, 0, 0],...,[0, 0, 0, ..., 0, 0, 0],[0, 0, 0, ..., 0, 0, 0],[0, 0, 0, ..., 1, 0, 0]], dtype=int64)
sum_words=bag_of_words.sum(axis=0)
sum_words
matrix([[ 1, 11, 11, ..., 2, 6, 2]], dtype=int64)
words_freq=[(word,sum_words[0,idx]) for word,idx in vec.vocabulary_.items()]
sum_words=sorted(words_freq,key= lambda x: x[1],reverse=True)
sum_words[1:10]
[('and', 1062),('of', 536),('seattle', 533),('to', 471),('in', 449),('our', 359),('you', 304),('hotel', 295),('with', 280)]
将以上信息整合成函数
def get_top_n_words(corpus,n=None):vec=CountVectorizer().fit(df['desc'])bag_of_words=vec.transform(df['desc'])sum_words=bag_of_words.sum(axis=0)words_freq=[(word,sum_words[0,idx]) for word,idx in vec.vocabulary_.items()]sum_words=sorted(words_freq,key= lambda x: x[1],reverse=True)return sum_words[:n]
common_words=get_top_n_words(df['desc'],20)
common_words
[('the', 1258),('and', 1062),('of', 536),('seattle', 533),('to', 471),('in', 449),('our', 359),('you', 304),('hotel', 295),('with', 280),('is', 271),('at', 231),('from', 224),('for', 216),('your', 186),('or', 161),('center', 151),('are', 136),('downtown', 133),('on', 129)]
df1=pd.DataFrame(common_words,columns=['desc','count'])
common_words=get_top_n_words(df['desc'],20)
df2=pd.DataFrame(common_words,columns=['desc','count'])
chart_info2=df2.groupby(['desc']).sum().sort_values('count',ascending=False)
chart_info2.plot(kind='barh',figsize=(14,10),title='top 20 before remove stopwords')
<AxesSubplot:title={'center':'top 20 before remove stopwords'}, ylabel='desc'>

chart_info1=df1.groupby(['desc']).sum().sort_values('count',ascending=False)
chart_info1.plot(kind='barh',figsize=(14,10),title='top 20 before remove stopwords')
<AxesSubplot:title={'center':'top 20 before remove stopwords'}, ylabel='desc'>

def get_any1_top_n_words_after_stopwords(corpus,n=None):vec=CountVectorizer(stop_words='english',ngram_range=(1,1)).fit(df['desc'])bag_of_words=vec.transform(df['desc'])sum_words=bag_of_words.sum(axis=0)words_freq=[(word,sum_words[0,idx]) for word,idx in vec.vocabulary_.items()]sum_words=sorted(words_freq,key= lambda x: x[1],reverse=True)return sum_words[:n]
common_words=get_any1_top_n_words_after_stopwords(df['desc'],20)
df2=pd.DataFrame(common_words,columns=['desc','count'])
chart_info2=df2.groupby(['desc']).sum().sort_values('count',ascending=False)
chart_info2.plot(kind='barh',figsize=(14,10),title='top 20 before after stopwords')
<AxesSubplot:title={'center':'top 20 before after stopwords'}, ylabel='desc'>

def get_any2_top_n_words_after_stopwords(corpus,n=None):vec=CountVectorizer(stop_words='english',ngram_range=(2,2)).fit(df['desc'])bag_of_words=vec.transform(df['desc'])sum_words=bag_of_words.sum(axis=0)words_freq=[(word,sum_words[0,idx]) for word,idx in vec.vocabulary_.items()]sum_words=sorted(words_freq,key= lambda x: x[1],reverse=True)return sum_words[:n]common_words=get_any2_top_n_words_after_stopwords(df['desc'],20)
df2=pd.DataFrame(common_words,columns=['desc','count'])
chart_info2=df2.groupby(['desc']).sum().sort_values('count',ascending=False)
chart_info2.plot(kind='barh',figsize=(14,10),title='top 20 before after stopwords')
<AxesSubplot:title={'center':'top 20 before after stopwords'}, ylabel='desc'>

def get_any3_top_n_words_after_stopwords(corpus,n=None):vec=CountVectorizer(stop_words='english',ngram_range=(3,3)).fit(df['desc'])bag_of_words=vec.transform(df['desc'])sum_words=bag_of_words.sum(axis=0)words_freq=[(word,sum_words[0,idx]) for word,idx in vec.vocabulary_.items()]sum_words=sorted(words_freq,key= lambda x: x[1],reverse=True)return sum_words[:n]common_words=get_any3_top_n_words_after_stopwords(df['desc'],20)
df2=pd.DataFrame(common_words,columns=['desc','count'])
chart_info2=df2.groupby(['desc']).sum().sort_values('count',ascending=False)
chart_info2.plot(kind='barh',figsize=(14,10),title='top 20 before after stopwords')
<AxesSubplot:title={'center':'top 20 before after stopwords'}, ylabel='desc'>

描述的一些统计信息
df=pd.read_csv("Seattle_Hotels.csv",encoding="latin-1")
df['desc'][0]
"Located on the southern tip of Lake Union, the Hilton Garden Inn Seattle Downtown hotel is perfectly located for business and leisure. \nThe neighborhood is home to numerous major international companies including Amazon, Google and the Bill & Melinda Gates Foundation. A wealth of eclectic restaurants and bars make this area of Seattle one of the most sought out by locals and visitors. Our proximity to Lake Union allows visitors to take in some of the Pacific Northwest's majestic scenery and enjoy outdoor activities like kayaking and sailing. over 2,000 sq. ft. of versatile space and a complimentary business center. State-of-the-art A/V technology and our helpful staff will guarantee your conference, cocktail reception or wedding is a success. Refresh in the sparkling saltwater pool, or energize with the latest equipment in the 24-hour fitness center. Tastefully decorated and flooded with natural light, our guest rooms and suites offer everything you need to relax and stay productive. Unwind in the bar, and enjoy American cuisine for breakfast, lunch and dinner in our restaurant. The 24-hour Pavilion Pantry? stocks a variety of snacks, drinks and sundries."
df['word_count']=df['desc'].apply( lambda x:len(str(x).split(' ')) )
df.head()
| name | address | desc | word_count | |
|---|---|---|---|---|
| 0 | Hilton Garden Seattle Downtown | 1821 Boren Avenue, Seattle Washington 98101 USA | Located on the southern tip of Lake Union, the... | 184 |
| 1 | Sheraton Grand Seattle | 1400 6th Avenue, Seattle, Washington 98101 USA | Located in the city's vibrant core, the Sherat... | 152 |
| 2 | Crowne Plaza Seattle Downtown | 1113 6th Ave, Seattle, WA 98101 | Located in the heart of downtown Seattle, the ... | 147 |
| 3 | Kimpton Hotel Monaco Seattle | 1101 4th Ave, Seattle, WA98101 | What?s near our hotel downtown Seattle locatio... | 151 |
| 4 | The Westin Seattle | 1900 5th Avenue, Seattle, Washington 98101 USA | Situated amid incredible shopping and iconic a... | 151 |
df['word_count'].plot(kind='hist',bins=50)
<AxesSubplot:ylabel='Frequency'>

文本处理
sub_replace=re.compile('[^0-9a-z#-]')
from nltk.corpus import stopwords
stopwords=set(stopwords.words('english'))
def clean_txt(text):text.lower()text=sub_replace.sub(' ',text)''.join( word for word in text.split(' ') if word not in stopwords )return text
df['desc_clean']=df['desc'].apply(clean_txt)
df['desc_clean'][0]
' ocated on the southern tip of ake nion the ilton arden nn eattle owntown hotel is perfectly located for business and leisure he neighborhood is home to numerous major international companies including mazon oogle and the ill elinda ates oundation wealth of eclectic restaurants and bars make this area of eattle one of the most sought out by locals and visitors ur proximity to ake nion allows visitors to take in some of the acific orthwest s majestic scenery and enjoy outdoor activities like kayaking and sailing over 2 000 sq ft of versatile space and a complimentary business center tate-of-the-art technology and our helpful staff will guarantee your conference cocktail reception or wedding is a success efresh in the sparkling saltwater pool or energize with the latest equipment in the 24-hour fitness center astefully decorated and flooded with natural light our guest rooms and suites offer everything you need to relax and stay productive nwind in the bar and enjoy merican cuisine for breakfast lunch and dinner in our restaurant he 24-hour avilion antry stocks a variety of snacks drinks and sundries '
相似度计算
df.index
RangeIndex(start=0, stop=152, step=1)
df.head()
| name | address | desc | word_count | desc_clean | |
|---|---|---|---|---|---|
| 0 | Hilton Garden Seattle Downtown | 1821 Boren Avenue, Seattle Washington 98101 USA | Located on the southern tip of Lake Union, the... | 184 | ocated on the southern tip of ake nion the... |
| 1 | Sheraton Grand Seattle | 1400 6th Avenue, Seattle, Washington 98101 USA | Located in the city's vibrant core, the Sherat... | 152 | ocated in the city s vibrant core the herat... |
| 2 | Crowne Plaza Seattle Downtown | 1113 6th Ave, Seattle, WA 98101 | Located in the heart of downtown Seattle, the ... | 147 | ocated in the heart of downtown eattle the ... |
| 3 | Kimpton Hotel Monaco Seattle | 1101 4th Ave, Seattle, WA98101 | What?s near our hotel downtown Seattle locatio... | 151 | hat s near our hotel downtown eattle locatio... |
| 4 | The Westin Seattle | 1900 5th Avenue, Seattle, Washington 98101 USA | Situated amid incredible shopping and iconic a... | 151 | ituated amid incredible shopping and iconic a... |
df.set_index('name' ,inplace=True)
df.index[:5]
Index(['Hilton Garden Seattle Downtown', 'Sheraton Grand Seattle','Crowne Plaza Seattle Downtown', 'Kimpton Hotel Monaco Seattle ','The Westin Seattle'],dtype='object', name='name')
tf=TfidfVectorizer(analyzer='word',ngram_range=(1,3),stop_words='english')#将原始文档集合转换为TF-IDF特性的矩阵。
tf
TfidfVectorizer(ngram_range=(1, 3), stop_words='english')
tfidf_martix=tf.fit_transform(df['desc_clean'])
tfidf_martix.shape
(152, 27694)
cosine_similarity=linear_kernel(tfidf_martix,tfidf_martix)
cosine_similarity.shape
(152, 152)
cosine_similarity[0]
array([1. , 0.01354605, 0.02855898, 0.00666729, 0.02915865,0.01258837, 0.0190937 , 0.0152567 , 0.00689703, 0.01852763,0.01241924, 0.00919602, 0.01189826, 0.01234794, 0.01200711,0.01596218, 0.00979221, 0.04374643, 0.01138524, 0.02334485,0.02358692, 0.00829121, 0.00620275, 0.01700472, 0.0191396 ,0.02340334, 0.03193292, 0.00678849, 0.02272962, 0.0176494 ,0.0125159 , 0.03702338, 0.01569165, 0.02001584, 0.03656467,0.03189017, 0.00644231, 0.01008181, 0.02428547, 0.03327365,0.01367507, 0.00827835, 0.01722986, 0.04135263, 0.03315194,0.01529834, 0.03568623, 0.01294482, 0.03480617, 0.01447235,0.02563783, 0.01650068, 0.03328324, 0.01562323, 0.02703264,0.01315504, 0.02248426, 0.02690816, 0.00565479, 0.02899467,0.02900863, 0.00971019, 0.0439659 , 0.03020971, 0.02166199,0.01487286, 0.03182626, 0.00729518, 0.01764764, 0.01193849,0.02405471, 0.01408249, 0.02632335, 0.02027866, 0.01978292,0.04879328, 0.00244737, 0.01937539, 0.01388813, 0.02996677,0.00756079, 0.01429659, 0.0050572 , 0.00630326, 0.01496956,0.04104425, 0.00911942, 0.00259554, 0.00645944, 0.01460694,0.00794788, 0.00592598, 0.0090397 , 0.00532289, 0.01445326,0.01156657, 0.0098189 , 0.02077998, 0.0116756 , 0.02593775,0.01000463, 0.00533785, 0.0026153 , 0.02261775, 0.00680343,0.01859473, 0.03802118, 0.02078981, 0.01196228, 0.03744293,0.05164375, 0.00760035, 0.02627101, 0.01579335, 0.01852171,0.06768183, 0.01619049, 0.03544484, 0.0126264 , 0.01613638,0.00662941, 0.01184946, 0.01843151, 0.0012407 , 0.00687414,0.00873796, 0.04397665, 0.06798914, 0.00794379, 0.01098165,0.01520306, 0.01257289, 0.02087956, 0.01718063, 0.0292332 ,0.00489742, 0.03096065, 0.01163736, 0.01382631, 0.01386944,0.01888652, 0.02391748, 0.02814364, 0.01467017, 0.00332169,0.0023627 , 0.02348599, 0.00762246, 0.00390889, 0.01277579,0.00247891, 0.00854051])
求酒店的推荐
indices=pd.Series(df.index)
indices[:5]
0 Hilton Garden Seattle Downtown
1 Sheraton Grand Seattle
2 Crowne Plaza Seattle Downtown
3 Kimpton Hotel Monaco Seattle
4 The Westin Seattle
Name: name, dtype: object
def recommendation(name,cosine_similarity):recommend_hotels=[]idx=indices[indices==name].index[0]score_series=pd.Series(cosine_similarity[idx]).sort_values(ascending=False)top_10_indexes=list(score_series[1:11].index)for i in top_10_indexes:recommend_hotels.append(list(df.index)[i])return recommend_hotels
recommendation('Hilton Garden Seattle Downtown',cosine_similarity)
['Staybridge Suites Seattle Downtown - Lake Union','Silver Cloud Inn - Seattle Lake Union','Residence Inn by Marriott Seattle Downtown/Lake Union','MarQueen Hotel','The Charter Hotel Seattle, Curio Collection by Hilton','Embassy Suites by Hilton Seattle Tacoma International Airport','SpringHill Suites Seattle\xa0Downtown','Courtyard by Marriott Seattle Downtown/Pioneer Square','The Loyal Inn','EVEN Hotel Seattle - South Lake Union']
相关文章:
基于文本来推荐相似酒店
基于文本来推荐相似酒店 查看数据集基本信息 import pandas as pd import numpy as np from nltk.corpus import stopwords from sklearn.metrics.pairwise import linear_kernel from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extrac…...
红队内网攻防渗透:内网渗透之前置知识外网权限提升技术
红队内网攻防渗透 1. 内网权限提升技术1.1 外网权限提升的思路-前置知识1.1.1 外网权限提升知识点:1.1.2 外网权限提升基础内容1.1.2.1 为什么我们要学习权限提升转移技术:1.1.2.2 具体有哪些权限需要我们了解掌握的:1.1.2.3 以上常见权限获取方法简要归类说明:1.1.2.4 以上…...
【漏洞复现】大华智能物联综合管理平台 log4j远程代码执行漏洞
0x01 产品简介 大华ICC智能物联综合管理平台对技术组件进行模块化和松耦合,将解决方案分层分级,提高面向智慧物联的数据接入与生态合作能力。 0x02 漏洞概述 大华ICC智能物联综合管理平台/evo-apigw/evo-brm/1.2.0/user/is-exist 接口处存在 l0g4i远程…...
OrangePi AIpro测评
文章目录 1、外观部分2、系统初探3、AI性能体验4、总结 首先非常感谢csdn以及香橙派能够提供这样一个平台,可以测试OrangePi AIpro这样一块开发板,这块板子给我的感觉还是非常不错的,非常适合用来作为嵌入式学习的板子,性能也达到…...
写代码之前一定要提前想好思路
就和写数学题目一样,在做题目之前要先把思路确立下来。可能是我早年做数学的时候老是着急做题目没怎么分析过题目,把这个习惯不自觉地代入了代码的写入当中。习惯的养成使得我即使明白了自己的问题也依然会不断的犯错,看来只有刻意地提醒自己…...
「清新题精讲」Skiers
更好的阅读体验 Skiers Description 给定 n n n 个点的有向无环平面图,求最少多少条从 1 1 1 到 n n n 的路径能覆盖原图的所有边? 1 ≤ n ≤ 5 1 0 3 1\le n\le 5\times10^3 1≤n≤5103 Solution 考虑从 1 1 1 到 n n n 的路径其实是边的链覆…...
Transformer详解(8)-基于transformer的英文到中文翻译模型
1、数据使用TED,数据清洗 WIT是“转录和翻译演讲网络清单”的缩写,是 TED 演讲多语言转录的现成版本,可用于研究目的。 2、英文中文翻译模型搭建 3、模型训练 4、模型推理...
算法的时间复杂度(详解)
前言: 算法(Algorithm):就是定义良好的计算过程,他取一个或一组的值为输入,并产生出一个或一组值作为 输出。简单来说算法就是一系列的计算步骤,用来将输入数据转化成输出结果 一、算法效率 1.1 如何衡量一个算法的好坏 如何衡…...
Flutter 中的 NestedScrollViewViewport 小部件:全面指南
Flutter 中的 NestedScrollViewViewport 小部件:全面指南 Flutter 是一个功能丰富的 UI 工具集,它提供了多种布局和控件来帮助开发者构建美观且功能强大的应用。在 Flutter 的滚动控件中,NestedScrollView 是一个特别的存在,它允…...
断开自定义模块与自定义库的链接
断开自定义模块与自定义库的链接 1、断开模块与库的链接 1、断开模块与库的链接 如果摸个库文件添加到模型中,无法“Disable Link”时,可以使用save_system命令进行断开到模型中用户定义的库模块的链接; 参考链接: 传送门 save…...
粉丝问,有没有UI的统计页面,安排!
移动应用的数据统计页面具有以下几个重要作用: 监控业务指标:数据统计页面可以帮助用户监控关键业务指标和数据,例如用户活跃度、销售额、转化率等。通过实时更新和可视化呈现数据,用户可以及时了解业务的整体状况和趋势。分析用…...
Nginx R31 doc-17-debugging 调试
前言 大家好,我是老马。很高兴遇到你。 我们为 java 开发者实现了 java 版本的 nginx https://github.com/houbb/nginx4j 如果你想知道 servlet 如何处理的,可以参考我的另一个项目: 手写从零实现简易版 tomcat minicat 手写 nginx 系列 …...
python -【一】基础语法
python 基础语法 一. 基础数据类型 常用的 6 种数据类型 类型描述说明数字(Number)int,float,complex(复数),bool复数:4 3j,j 表示复数字符串(String)文本࿱…...
数据结构 | 详解二叉树——堆与堆排序
🥝堆 堆总是一棵完全二叉树。 大堆:父节点总是大于子节点。 小堆:父节点总是小于子节点。 注意:1.同一个节点下的两个子节点并无要求先后顺序。 2.堆可以是无序的。 🍉堆的实现 🌴深度剖析 1.父节点和子…...
vb.net,C#强制结束进程,“优雅”的退出方式
在VB.NET中,Application.Exit()和Environment.Exit(0)都用于结束程序,但它们的使用场景和背后的逻辑略有不同。 **Application.Exit()**: Application.Exit()通常用于Windows Forms应用程序中。当调用Application.Exit()时,它会触…...
牛客热题:数据流中的中位数
📟作者主页:慢热的陕西人 🌴专栏链接:力扣刷题日记 📣欢迎各位大佬👍点赞🔥关注🚓收藏,🍉留言 文章目录 牛客热题:数据流中的中位数题目链接方法一…...
JavaScript-JavaWeb
目录 什么是JavaScript? js引入方式 js基础语法 书写语法 变量 数据据类型 运算符 类型转换 流程语句 js函数 js对象 1.Array 2.String 3.JSON js事件监听 什么是JavaScript? ● JavaScript(简称:JS)是一门跨平台、面向对象的脚本语言。是用来控制网页行为的,它能…...
vue组件通讯$parent和$children获取单签组件的⽗组件和当前组件的⼦组件的例子
在 Vue 中,$parent 和 $children 是实例属性,允许你访问组件的父组件和子组件。但是,请注意,这些属性主要用于在开发过程中进行调试和临时访问,并不推荐在正常的组件通信中使用,因为它们破坏了组件的封装性…...
Util和utils
Util FieldStats 这段代码定义了一个名为FieldStats的Java类,位于com.cqupt.software_1.Util包中。它使用了lombok库的Data和AllArgsConstructor注解,这些注解帮助生成了getter、setter、toString等方法,以及包含所有参数的构造函数。类中有…...
拷贝构造、移动构造、拷贝赋值、移动赋值
最近在学习C的拷贝构造函数时发现一个问题:在函数中返回局部的类对象时,并没有调用拷贝构造函数。针对这个问题,查阅了一些资料,这里记录整理一下。 调用拷贝构造函数的三种情况: ① 用一个类去初始化另一个对象时&a…...
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...
【C语言练习】080. 使用C语言实现简单的数据库操作
080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...
项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)
Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败,具体原因是客户端发送了密码认证请求,但Redis服务器未设置密码 1.为Redis设置密码(匹配客户端配置) 步骤: 1).修…...
回溯算法学习
一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...
iview框架主题色的应用
1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题,无需引入,直接可…...
