当前位置: 首页 > news >正文

STM32的时钟介绍

目录

  • 前言
  • 1. 简介
    • 1.1 时钟是用来做什么的
    • 1.2 时钟产生的方式
  • 2. 时钟树的组成
    • 2.1 时钟源
      • 2.1.1 内部时钟
      • 2.1.2 外部时钟
    • 2.2 PLL锁相环
    • 2.3 SYSCLK
    • 2.4 AHB和HCLK
    • 2.5 APB和PCLK
    • 2.6 总结
  • 3. STM32时钟的如何进行工作
  • 4.我的疑问
    • 4.1 使用MSI和HSI有什么区别吗?
    • 4.2 MSI的频率为什么可以调节?
  • 5. 总结
  • 6. 参考资料

前言

最近因为工作需要又重新接触到了大学时期经常使用的STM32单片机。本以为自己工作了那么多年,再加上大学时期经常使用单片机,对于在STM32上面开发应该是手到擒来。

但是在真正开发时还是碰到了很多问题,特别是时钟这块,经常被各种SYSCLK,HCLK, APB, AHB, PLL等搞的晕头转向,调试时也不知道该如何下手,于是决定花点时间把STM32单片机的时钟给梳理下,弄清楚后再进行开发,否则只是一味的去试不仅消耗时间多,而且很难得到最正确的那个解。

1. 简介

1.1 时钟是用来做什么的

时钟简单来说就是用来驱动整个芯片进行工作的,它为设备的运行提供了心跳。如果时钟速度越快,那么心跳的频率也就越快,执行指令的速度也就更快。时钟精度越高,每次心跳的间隔和周期也就更一致,出现误差的可能性就越小。

官方的说:时钟是由电路产生的具有周期性的脉冲信号,相当于单片机的心脏,要想使用单片机的外设必须开启相应的时钟。由时钟去驱动指令的执行。

1.2 时钟产生的方式

时钟一般是通过RC振荡器或者晶体振荡器、陶瓷振荡器等来提供时钟信号。

  • RC振荡器时钟

  •   -  使用了电阻(R)和电容(C)来产生振荡信号-  由于仅需要简单的电阻和电容元件,RC振荡器的成本通常比晶体振荡器、陶瓷谐振器等更低。-  精度相对较低:与晶体振荡器相比,RC振荡器的频率稳定性和精度通常较低。
    
  • 陶瓷振荡器

      - 陶瓷谐振器也是一种用于产生时钟信号的设备,它与晶体振荡器类似,但频率稳定性和精度通常没有晶体振荡器高。- 由于成本更低且尺寸较小,陶瓷谐振器常用于对频率要求不太严格的应用。
    
  • 晶体时钟振荡器

      - 晶体振荡器是一种利用晶体的共振特性产生稳定时钟信号的设备。- 它通常具有非常高的频率稳定性和准确性,适用于需要高精度时钟信号的场合,如微控制器、微处理器等。- 晶体振荡器通常需要外部连接晶体来实现工作。
    

整体上来说晶体和陶瓷振荡器相比较于RC振荡器更加稳定,精度更好,成本也更高。一般情况下单片机的HSI(内部高速时钟)使用的都是RC振荡器,外部HSE采用陶瓷和晶体等精度更高的振荡器。

2. 时钟树的组成

请添加图片描述
上图是一个STM32时钟树图,该图是从STM32CUBE MX上截取下来的。如果对单片机的时钟没有个初步了解的话,让我们直接去通过这个图去配置时钟,估计大多数人都会感觉到无从下手。下面我们就一点点去分析上面这个时钟树有哪些东西组成,相信等看完了分析后,就能有个初步的理解了。

2.1 时钟源

请添加图片描述
时钟源也就是一切时钟的源头。
STM32的时钟源总共分为两种,一种是外部时钟如HSE和LSE,另外一种是内部时钟如HSI,MSI,LSI。他们构成了时钟的源头,后续其他的PLL和SYSCLK ,HCLK ,PCLK都是由这些时钟源一部部产生的(实际上就是倍频或者分频)。

2.1.1 内部时钟

  • LSI((Low-Speed Internal RC Oscillator))

    低速内部时钟,RC振荡器

    通常工作在几十Khz范围内,用于一些低功耗模式下的定时器或者看门狗定时器功能。
    以及一些对时钟精度要求不高的场景

  • MSI(Multi-Speed Internal RC Oscillator)

    在STM32L4系列微控制器中引入的新型内部时钟源。
    MSI时钟源提供了多个可选的频率档位,可以根据应用的需求选择不同的频率,从数百千赫兹到数十兆赫兹不等。

    • 为什么会有MSI?

        灵活性:MSI的引入可以让开发者在不同的应用场景下选择合适的时钟频率,从而更好地平衡性能和功耗。功耗优化:MSI可以提供多个可调节的时钟频率选项,在低功耗模式下选择较低的频率,可以有效降低功耗。
      
    • MSI的工作原理?

      我们知道其它时钟一般都是使用固定频率的RC振荡器,但是MSI他是可以进行配置的,这是为什么呢?这是因为MSI是通过内部的数字控制单元来产生时钟信号的。在STM32微控制器中,MSI通常是一个可编程的RC振荡器,其频率可以在一定范围内进行调节。
      当需要使用MSI作为时钟源时,可以通过寄存器设置选择合适的频率,控制单元会根据设置的参数来产生相应的时钟信号。

      MSI的工作原理涉及到数字控制单元中的PLL(Phase-Locked Loop)等电路,具体细节可能会因不同型号和系列的STM32微控制器而有所差异。

  • HSI (High-Speed Internal RC Oscillator)

高速内部时钟,RC振荡器

高速内部RC振荡器,通常工作在几十兆赫兹的频率范围内。HSI时钟是STM32微控制器的主要时钟源之一,用于驱动处理器核心和大部分外设模块的正常运行。

2.1.2 外部时钟

  • HSE(High-Speed External)

    外部高速振荡器,可以连接到微控制器的晶体振荡器引脚(OSC_IN和OSC_OUT)。

    外部时钟振荡器一般采用晶体振荡器,他可以提供更高的准确性和稳定性。
    但是同时成本也更高一些

  • LSE(Low-Speed External)

    一种用于提供低速时钟信号的外部时钟源

    STM32微控制器中,LSE通常指的是外部32.768kHz晶体振荡器,因为它的频率正好是2的15次方,可以很方便地与RTC的预分频器相结合,从而实现精确的秒级时间计数。

2.2 PLL锁相环

请添加图片描述

PLL是一种电路,可根据输入的参考时钟信号生成一个高频率的时钟信号输出。在STM32中,PLL通常用于将外部晶体振荡器提供的低频时钟信号倍频,从而生成更高频率的系统时钟信号,以满足处理器核心和外设的工作频率要求。

2.3 SYSCLK

指在STM32微控制器中用于驱动整个系统的时钟信号。它是所有内部模块和外设的时钟源,对于系统的正常运行至关重要。

Sysclk的频率和稳定性直接影响着处理器的运行速度、外设的工作性能以及整个系统的功耗。

请添加图片描述

从上图可以看到SYSCLK的时钟一般来自于HSI、MSI、HSE、PLL。

然后SYSCLK的时钟通过AHB预分频器分频后传递到HCLK。

同时系统中其它的外设在初始化时也可以将自己的时钟源选择到SYSCLK。

2.4 AHB和HCLK

请添加图片描述

AHB是什么?
AHB(Advanced High-performance Bus)是一种用于连接主要系统总线和高性能外设的总线架构,它是STM32微控制器中的主要系统总线之一,用于连接处理器核、内存和高带宽外设,如DMA控制器、高速存储器接口等

为什么会有AHB?

  • 高性能需求:一些外设,比如DMA控制器、存储器接口等,需要更高的数据传输速度和带宽,而普通的总线无法满足这些要求。
  • 分流系统负载:将外设的访问流量从主系统总线中分流出来,可以减轻主系统总线的负荷,提高整个系统的效率和性能。

AHB prescaler(AHB预分频器)

是用来设置Advanced High-performance Bus(AHB)时钟频率的寄存器。通过配置AHB预分频器,可以将系统时钟(SYSCLK)分频后得到AHB总线的工作频率。

HCLK(AHB Clock)

HCLK就是AHB 总线的时钟

2.5 APB和PCLK

请添加图片描述
APB是什么?
APB代表高级外设总线(Advanced Peripheral Bus),是连接外设的总线。在STM32微控制器中,通常有两种类型的APB总线:APB1和APB2。

APB1
APB1主要连接低速外设

APB2
APB2主要连接高速外设

PCLK
APB1上的时钟为PCLK1,APB2上的时钟为PCLK2

2.6 总结

STM32的时钟首先来自于时钟源,其中HSI、HSE、MSI这些高速时钟一般是用于系统时钟(SYSCLK)的,LSI和LSE是用于低速外设的。

然后SYSCLK 分频后得到 HCLK, HCLK分频后得到PCLK1和PCLK2。

对于整个系统来说,之所以产生如此之多的时钟,是为了适配不同工作速率的硬件,大家想一下如果都用高速时钟那么功耗就很高,且会占据很多的CPU资源。然后一些外设根本用不到那么快的时钟,给他们那么高的时钟频率,不仅不会带来好处,反而会增加功耗,降低CPU的处理效率。因此通过这种多时钟的方式,去为不同的外设分配合适的时钟,可以有效降低功耗以及提升CPU的执行效率。例如CPU和FLASH需要用到高速时钟,而看门狗和RTC这些使用低速时钟就可以了。

3. STM32时钟的如何进行工作

  1. 时钟源选择

内部时钟源的选择:STM32微控制器通常包含多种内部时钟源,如LSI、MSI和HSI等,在初始化阶段需要选择合适的内部时钟源,并使能该时钟源。

外部时钟源的选择:除了内部时钟源,STM32微控制器还可以接入外部晶体振荡器或其他外部时钟源,用于提供更高精度或更高频率的时钟信号。在初始化阶段需要配置外部时钟源,并使能相应的外部时钟输入。

  1. PLL的倍频

将外部时钟信号进行倍频,从而产生更高频率的时钟信号,以满足处理器核心和外设的工作频率要求。

  1. 时钟分频

时钟信号可以通过分频器进行分频,以获得特定频率的时钟信号,适应不同模块的工作频率需求。

  1. 配置外设始终

不同的外设可以在初始化时,选择使用哪个时钟。

总的来说,时钟系统的工作原理就是通过选择合适的内部或外部时钟源,进行倍频和分频操作,将时钟信号分配给各个模块,以确保微控制器内部各个部件都能够按照预期的频率和时序工作。这样可以保证整个系统的稳定性、可靠性和性能。

4.我的疑问

4.1 使用MSI和HSI有什么区别吗?

MSI是一个多速率内部振荡器,HSI是高速内部时钟。

  • 时钟频率: MSI可以通过软件配置产生不同频率的时钟。HSI是一个固定的16MHZ的内部RC振荡器
  • 启动时间:HSI的启动时间相对较短,因为他是内部振荡器。而MSI的启动时间可能稍长一些。
  • 应用场景:HSI适用于精度要求不高的应用,如简单的控制任务,HSI可能就足够了。而对于需要更高时钟精度或者特定频率的应用 需要使用MSI进行相应的配置 精度和稳定性:MSI的主振荡器内部时钟通常具有更好的稳定性和精确度,适合对时钟精度要求较高的应用场合

4.2 MSI的频率为什么可以调节?

振荡器的频率不都是固定的吗?MSI用的什么振荡器为什么可以调节?

因为它内部集成了一个可编程的RC振荡器

5. 总结

STM32的时钟首先来自于时钟源,其中HSI、HSE、MSI这些高速时钟一般是用于系统时钟(SYSCLK)的,LSI和LSE是用于低速外设的。

然后SYSCLK 分频后得到 HCLK, HCLK分频后得到PCLK1和PCLK2。

对于整个系统来说,之所以产生如此之多的时钟,是为了适配不同工作速率的硬件,大家想一下如果都用高速时钟那么功耗就很高,且会占据很多的CPU资源。然后一些外设根本用不到那么快的时钟,给他们那么高的时钟频率,不仅不会带来好处,反而会增加功耗,降低CPU的处理效率。因此通过这种多时钟的方式,去为不同的外设分配合适的时钟,可以有效降低功耗以及提升CPU的执行效率。例如CPU和FLASH需要用到高速时钟,而看门狗和RTC这些使用低速时钟就可以了。

6. 参考资料

STM32各种时钟的区别
GPT

相关文章:

STM32的时钟介绍

目录 前言1. 简介1.1 时钟是用来做什么的1.2 时钟产生的方式 2. 时钟树的组成2.1 时钟源2.1.1 内部时钟2.1.2 外部时钟 2.2 PLL锁相环2.3 SYSCLK2.4 AHB和HCLK2.5 APB和PCLK2.6 总结 3. STM32时钟的如何进行工作4.我的疑问4.1 使用MSI和HSI有什么区别吗?4.2 MSI的频…...

FindBI学习总结

大数据分析BI工具:用户只需简单拖拽便能制作出丰富多样的数据可视化信息 关注点: 快速入门、数据加工、构建图表和分析数据、数据分析进阶 1、界面介绍 目录–仪表板–数据准备 仪表板目录–预览区域 快速上手: 1、数据准备2、制作仪表板3、分…...

k8s——Pod详解

一、Pod基础概念 1.1 Pod定义 Pod是kubernetes中最小的资源管理组件,Pod也是最小化运行容器化应用的资源对象。一个Pod代表着集群中运行的一个进程。kubernetes中其他大多数组件都是围绕着Pod来进行支撑和扩展Pod功能的,例如,用于管理Pod运行…...

Visual Studio 的调试

目录 引言 一、调试的基本功能 设置断点 启动调试 检查变量 逐步执行代码 调用堆栈 使用即时窗口 二、调试技巧 条件断点 日志断点 数据断点 异常调试 三、调试高级功能 远程调试 多线程调试 内存调试 性能调试 诊断工具 四、调试策略与最佳实践 系统化的…...

mysql语句大全及用法

MySQL是一种广泛使用的开源关系型数据库管理系统,它支持标准的SQL(Structured Query Language)语言,用于数据库的查询和操作。以下是一些基本的MySQL语句及其用法的概述: 连接MySQL数据库 mysql -h主机地址 -P端口号…...

如何找出真正的交易信号?Anzo Capital昂首资本总结7个

匕首是一种新兴的价格走势形态,虽然不常见,但具有较高的统计可靠性。它通常预示着趋势的持续发展。该模式涉及到同时参考两个不同的时间周期进行交易,一个是短期,另一个是长期,比如一周时间框架与一天时间框架、一天时…...

JavaScript-内存分配

内存空间 内存分为栈和堆 栈:由操作系统自动释放存放的变量值和函数值等。简单数据类型存放在栈中 栈会由低到高先入后出 堆:存储引用类型 (对象) 对象会先将数据存放在堆里面,堆的地址放在栈里面...

理论知识.质数打表

啊,哈喽,小伙伴们大家好。我是#张亿,今天呐,学的是理论知识.质数打表 为什么需要质数打表 我们已经学习了如何判断一个数是不是质数了,但是还不够。假设要判断很多很多个数是不是质数的时候,之前的学习的…...

FFMPEG+ANativeWinodow渲染播放视频

前言 学习音视频开发,入门基本都得学FFMPEG,按照目前互联网上流传的学习路线,FFMPEGANativeWinodow渲染播放视频属于是第一关卡的Boss,简单但是关键。这几天写了个简单的demo,可以比较稳定进行渲染播放,便…...

使用AXI MIG/Proc Sys Reset

使用AXI MIG/Proc Sys Reset 重要!仅当您的设计中包含AXI MIG时,才执行以下步骤。 AXI-MIG的连接接口 1.选择在/mig_7series_0/S_AXI上运行连接自动化。 2.选择/micblaze_0(缓存)或/micblaze _0(Periph)选项…...

Android基础-Kotlin语言的作用及优缺点

一、Kotlin语言的作用 Kotlin是一种由JetBrains公司开发的现代化静态类型编程语言,自其诞生以来,便在多个领域展现出了强大的应用潜力。其主要作用可以概括为以下几点: Android应用开发:Kotlin作为Android开发的官方推荐语言&am…...

手机投屏技巧:手机怎么投屏到电脑显示屏上?精选6招解决!

手机怎么投屏到电脑显示屏上?出于一些不同的原因,大多数人都希望能将手机投屏到电脑上。其中一个常见的原因是,大家经常会希望在笔记本电脑上共享图片,而无需上传或者登录微信进行文件传输。以及希望不依靠投影仪,就能…...

内存函数<C语言>

前言 前面两篇文章介绍了字符串函数,不过它们都只能用来处理字符串,C语言中也内置了一些内存函数来对不同类型的数据进行处理,本文将介绍:memcpy()使用以及模拟实现,memmove()使用以及模拟实现,memset()使用…...

华为校招机试 - LRU模拟(20240515)

题目描述 LRU(Least Recently Used)缓存算法是一种常用于管理缓存的策略,其目标是保留最近使用过的数据,而淘汰最久未被使用的数据。 实现简单的LRU缓存算法,支持查询、插入、删除操作。 最久未被使用定义:查询、插入和删除操作均为一次访问操作,每个元素均有一个最后…...

AI预测福彩3D采取888=3策略+和值012路一缩定乾坤测试5月29日预测第5弹

今天继续基于8883的大底,使用尽可能少的条件进行缩号,同时,同样准备两套方案,一套是我自己的条件进行缩号,另外一套是8883的大底结合2码不定位奖号预测二次缩水来杀号。好了,直接上结果吧~ 首先&…...

03_前端三大件CSS

文章目录 CSS用于页面元素美化1.CSS引入1.1style方式1.2写入head中,通过写style然后进行标签选择器加载样式1.3外部样式表 2.CSS样式选择器2.1 元素选择器2.2 id选择器2.3 class选择器 3.CSS布局相关3.1 CSS浮动背景:先设计一些盒子因此,引出…...

十种常用数据分析模型

1-线性回归(Linear Regression) 场景:预测商品销售额 优点:简单易用,结果易于解释缺点:假设线性关系,容易受到异常值影响概念:建立自变量和因变量之间线性关系的模型。公式&#x…...

salesforce 公式字段 判断一个字段是否在某个多选列表中

在 Salesforce 中,你可以使用公式字段来判断一个字段的值是否在一个多选列表中。这通常涉及使用包含特定值的函数和一些字符串操作。以下是一个常见的方法: 假设你有一个多选列表字段 Multi_Select_Field__c,你想检查这个字段是否包含某个值…...

C++STL容器系列(三)list的详细用法和底层实现

目录 一:介绍二:list的创建和方法创建list方法 三:list的具体用法3.1 push_back、pop_back、push_front、pop_front3.2 insert() 和 erase()3.3 splice 函数 四:list容器底层实现4.1 list 容器节点结构5.2 list容器迭代器的底层实…...

IEEE Latex模版踩雷避坑指南

参考文献 原Latex模版 \begin{thebibliography}{1} \bibliographystyle{IEEEtran}\bibitem{ref1} {\it{Mathematics Into Type}}. American Mathematical Society. [Online]. Available: https://www.ams.org/arc/styleguide/mit-2.pdf\bibitem{ref2} T. W. Chaundy, P. R. Ba…...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

在rocky linux 9.5上在线安装 docker

前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...

#Uniapp篇:chrome调试unapp适配

chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器:Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf

FTP 客服管理系统 实现kefu123登录,不允许匿名访问,kefu只能访问/data/kefu目录,不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...

(一)单例模式

一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...

日常一水C

多态 言简意赅:就是一个对象面对同一事件时做出的不同反应 而之前的继承中说过,当子类和父类的函数名相同时,会隐藏父类的同名函数转而调用子类的同名函数,如果要调用父类的同名函数,那么就需要对父类进行引用&#…...

从物理机到云原生:全面解析计算虚拟化技术的演进与应用

前言:我的虚拟化技术探索之旅 我最早接触"虚拟机"的概念是从Java开始的——JVM(Java Virtual Machine)让"一次编写,到处运行"成为可能。这个软件层面的虚拟化让我着迷,但直到后来接触VMware和Doc…...