当前位置: 首页 > news >正文

【JavaEE】多线程(1)

在这里插入图片描述
🎆🎆🎆个人主页🎆🎆🎆
🎆🎆🎆JavaEE专栏🎆🎆🎆
🎆🎆🎆计算机是怎么工作的🎆🎆🎆’

文章目录

  • 1.进程
    • 1.1进程的概念
    • 1.2为什么需要多进程
    • 1.3多进程的坏处
    • 2.线程
    • 2.1引入线程的原因
    • 2.2线程的属性
    • 2.3线程的代码写法
    • 2.4Thread构造方法
    • 2.5Thread的等待
    • 2.6Thread的状态

1.进程

1.1进程的概念

进程是计算机中程序执行的一个实例,是操作系统进行资源分配和调度的基本单位。每个进程都拥有独立的虚拟地址空间、执行状态、寄存器集合等,是操作系统执行多任务的基础.

1.2为什么需要多进程

在现在这个时代,动不动就是8核16线程的CPU甚至更大的CPU,不像以前一个CPU只有一个核心,但是任务又多,核心数又少,导致效率很低,但现在核心数变多了,那么任务就可以同时在多个核心下一起运行就引出了多进程的概念.

1.3多进程的坏处

每创建一次进程就需要系统分配资源(内存资源和文件资源),进程结束之后需要系统去释放资源,如果出现频繁的创建进程和结束进程,这样资源消耗巨大会导致系统响应变慢.所以我们需要引进"线程".

2.线程

2.1引入线程的原因

线程(Thread)是一个轻量级进程,与"进程"相比在创建和销毁上的开销更小,主要原因是:一个进程被创建 系统会给进程分配资源,而一个进程可以有多个线程,这些线程不需要独自一个一个被系统分配资源,它们可以共享系统为进程分配的资源,在销毁的时候也只需要销毁进程的资源即可,这样下来减少了创建与销毁的开销,线程不仅共享进程的资源,而且每一个线程都有自己的属性.

2.2线程的属性

1)ID(此处的id与系统中pcb中的id是不一样的,jvm自己单独搞了一套自己的id体系,但是本质上与pcb中的id是一一对应的)
获取方法:getId()
2)名称
获取方法:getName()
3)状态
获取方法:getState()
4)优先级
获取方法:getPriority()
虽然java提供了优先级的接口,但实际上你去修改了优先级,现象也不是很明显,这里的修改只是作为一个参考,具体还是看系统本身
5)是否后台线程
获取方法:isDaemon()
前台线程:前台线程结束了,那么这个线程就结束了,如果有多个前台线程那么等到最后一个前台线程结束了,那么这个线程就结束了
后台线程:后台线程结束了,不会影响整个线程的进度,但前台线程结束了,整个线程就结束了,那么自然后台线程也就结束了
main线程就是前台线程
还有就是像我们自己创建的线程默认情况下也是前台线程,可以通过setDaemon()方法来把线程设置后台线程
后台线程比如有gc(垃圾回收——对内存还有文件资源的回收) 是一个周期性持续执行的线程,不会自己主动结束
这是将前台线程设置为后台线程代码:

public class Deom7 {public static void main(String[] args) {Thread t1 = new Thread(() -> {for (int i = 0; i < 10; i++) {System.out.println("打印thread");try {Thread.sleep(1000);} catch (InterruptedException e) {throw new RuntimeException(e);}}});t1.setDaemon(true);t1.start();}}

注意:
nterrupt和isInterruptted方法
Thread.currentThread()这个是一个static方法,这个方法可以获取到当前线程也就是t这个引用
isInterruptted()方法就是线程内置标志位
true 表示线程要终止
false 表达线程要继续执行
调用这个interrupt()方法:
可以将标志位修改位true还可以唤醒sleep等阻塞
但是调用这个方法之后,如果程序中有sleep方法那么不仅仅会唤醒sleep而且还会清除修改的标志位,此处的清除标志位的目的就是将控制权交给程序猿
如果没有sleep,那么就是一个简简单单的修改标志位
6)是否存活
获取方法:isAlive()
jvm提供的Thread类中的线程与系统中的PCB的生命周期是不一样的
当我已经实例化Thread对象的时候,此时的系统还没有创建PCB
当我们执行到了start()方法的时候,系统才创建PCB
7)是否被中断
获取方法:isInterrupted()

2.3线程的代码写法

总共有五种常见的写法:
1.创建Thread子类
创建一个子类继承于Thread类重写父类的run方法

class MyThread extends Thread {@Overridepublic void run() {while(true) {System.out.println("打印Thread");try {Thread.sleep(1000);} catch (InterruptedException e) {throw new RuntimeException(e);}}}
}
public class Deom1 {public static void main(String[] args) throws InterruptedException {Thread t1 = new MyThread();t1.start();while(true) {System.out.println("打印main");Thread.sleep(1000);}}

2.通过实现Runnable接口
实现接口,重写接口中的run方法,这种方法可以解耦合

class MyRunnable implements Runnable{@Overridepublic void run() {while(true) {System.out.println("打印Thread");try {Thread.sleep(1000);} catch (InterruptedException e) {throw new RuntimeException(e);}}}
}
public class Deom2 {public static void main(String[] args) throws InterruptedException {Thread t1 = new Thread(new MyRunnable());t1.start();while(true) {System.out.println("打印main");Thread.sleep(1000);}}}

3.创建匿名内部类继承Thread类

public class Deom3 {public static void main(String[] args) throws InterruptedException {new Thread() {@Overridepublic void run() {while (true) {System.out.println("打印Thread");try {Thread.sleep(1000);} catch (InterruptedException e) {throw new RuntimeException(e);}}}}.start();while (true) {System.out.println("打印main");Thread.sleep(1000);}}
}

4.创建匿名内部类实现Runnable接口

public class Deom4 {public static void main(String[] args) throws InterruptedException {new Thread(new Runnable() {@Overridepublic void run() {while (true) {System.out.println("打印Thread");try {Thread.sleep(1000);} catch (InterruptedException e) {throw new RuntimeException(e);}}}}).start();while (true) {System.out.println("打印main");Thread.sleep(1000);}}}

5.使用lambda表达式

public class Deom5 {public static void main(String[] args) throws InterruptedException {Thread t1 = new Thread(() -> {while (true) {System.out.println("打印thread");try {Thread.sleep(1000);} catch (InterruptedException e) {throw new RuntimeException(e);}}});t1.start();while(true) {System.out.println("打印main");Thread.sleep(1000);}}
}

3,4,5这三种方式好处就是代码简洁,坏处就是可读性不高.
此处提到的run方法与start方法;
run方法:作用就是描述一个任务,然后线程实现之后去实现的任务就是这个run方法中描述的任务
start方法:作用就是创建线程和执行线程

2.4Thread构造方法

1)Thread()无参数
2)Thread(Runnable target) 使用Runnable对象创建对象
3)Thread(String name) 创建线程对象,并命名
4) Thread(Runnable target,String name)使用Runnable对象创建线程对象,并命名

2.5Thread的等待

由于线程的调度是抢占式的,所以在线程的执行顺序有不确定性,我们就需要引用一个join方法来解决。
在哪个线程中调用join方法就哪个线程阻塞等待
比如:在main线程中调用了t1.join,那么就是main线程等待阻塞,等t1线程结束之后,main线程才执行。
join不参数的属于死等,无限制的去等,这样有时候在有些场景不适用,所以还有一个有时间版本的join方法
join(long millis)
例子:
t1.join(10)被main线程调用,如果t1线程让main线程等待超过了10ms,那么main线程就不会继续等待阻塞下去,就会继续执行main线程下面的代码

使用slee控制的式"线程休眠时间 “而不是"两个代码执行的间隔时间”

main线程等t1线程:

public class Deom8 {public static void main(String[] args) throws InterruptedException {Thread t1 = new Thread(() -> {try {Thread.sleep(3000);} catch (InterruptedException e) {throw new RuntimeException(e);}});t1.start();t1.join();System.out.println("main线程结束");}
}

让t2等t1线程,main线程等t1和t2线程:

public class Deom9 {public static void main(String[] args) throws InterruptedException {Thread t1 = new Thread(() -> {try {System.out.println("t1线程结束");Thread.sleep(1000);} catch (InterruptedException e) {throw new RuntimeException(e);}});Thread t2= new Thread(() -> {try {t1.join();System.out.println("t2线程结束");Thread.sleep(1000);} catch (InterruptedException e) {throw new RuntimeException(e);}});t1.start();t2.start();t2.join();System.out.println("main线程结束");}}

main线程只等待t1线程3秒,但t1线程需要5秒执行时间,但时间一到main线程也不会等待t1:

public class Deom10 {public static void main(String[] args) throws InterruptedException {Thread t1 = new Thread(() -> {try {Thread.sleep(5000);} catch (InterruptedException e) {throw new RuntimeException(e);}System.out.println("t1线程结束");});t1.start();t1.join(3000);System.out.println("main线程结束");}
}

2.6Thread的状态

1.NEW Thread对象有了,但还未调用start系统内部的线程还未创建
2.TERMINATED 线程已经终止了,系统内核中的线程已经销毁,但对象还在
3.RUNNABLE 就绪状态 指这个线程要么已经在CPU中执行,要么随时都可以被CPU调度
4.WAITING 死等进入阻塞
5.TIMED_WAITING 带有时间的等
6.BLOCKED 进行锁竞争的时候产生的阻塞

绘图描述(简化):
在这里插入图片描述

相关文章:

【JavaEE】多线程(1)

&#x1f386;&#x1f386;&#x1f386;个人主页&#x1f386;&#x1f386;&#x1f386; &#x1f386;&#x1f386;&#x1f386;JavaEE专栏&#x1f386;&#x1f386;&#x1f386; &#x1f386;&#x1f386;&#x1f386;计算机是怎么工作的&#x1f386;&#x1f3…...

相对位姿估计

相对位姿估计 示意图 理论推导 离线数据库&#xff1a; P的位置 P [ X , Y , Z ] T P[X,Y,Z]^{T} P[X,Y,Z]T 相机内参 k 1 k_{1} k1​ 安卓手机&#xff1a; 相机内参 k 2 k_{2} k2​ 两个像素点位置 &#xff1a; p 1 和 p 2 p_1和p_2 p1​和p2​ 公式一&#xff1a;…...

记一次 .NET某工业设计软件 崩溃分析

一&#xff1a;背景 1. 讲故事 前些天有位朋友找到我&#xff0c;说他的软件在客户那边不知道什么原因崩掉了&#xff0c;从windows事件日志看崩溃在 clr 里&#xff0c;让我能否帮忙定位下&#xff0c;dump 也抓到了&#xff0c;既然dump有了&#xff0c;接下来就上 windbg …...

2020 6.s081——Lab5:Lazy page allocation

再来是千年的千年 不变是眷恋的眷恋 飞越宇宙无极限 我们永不说再见 ——超兽武装 完整代码见&#xff1a;SnowLegend-star/6.s081 at lazy (github.com) Eliminate allocation from sbrk() (easy) 顾名思义&#xff0c;就是去掉sbrk()中调用growproc()的部分。1s完事儿。 Laz…...

华为认证学习笔记:生成树

以太网交换网络中为了进行链路备份&#xff0c;提高网络可靠性&#xff0c;通常会使用冗余链路。但是使用冗余链路会在交换网络上产生环路&#xff0c;引发广播风暴以及MAC地址表不稳定等故障现象&#xff0c;从而导致用户通信质量较差&#xff0c;甚至通信中断。为解决交换网络…...

leetcode 97.交错字符串

思路&#xff1a;LCS 其实也是同一个类型的题目&#xff0c;一般涉及到这种子序列的字符串问题的时候&#xff0c;状态的设置基本上都应该是以...结尾为状态的。这里同样&#xff0c;设置用dp[i][j]为s1,s2字符以i&#xff0c;j结尾能否拼接成s3[ij]。 那么&#xff0c;首先就…...

The Missing Semester ( Shell 工具和脚本 和 Vim)

管道符号 &#xff08;1&#xff09;管道符号 | 将前一个命令的输出作为下一个命令的输入 例如&#xff1a; 以下为 ./semester输出中提取包含 "Last-Modified" 的行并写入文件 last-modified.txt./semester | grep "Last-Modified" > ~/last-modif…...

【Uniapp微信小程序】自定义水印相机、微信小程序地点打卡相机

效果图 template 下方的image图片自行寻找替换&#xff01; <template><view><camerav-if"!tempImagePath && cameraHeight ! 0":resolution"high":frame-size"large":device-position"device":flash"f…...

SimPO: Simple Preference Optimization with a Reference-Free Reward

https://github.com/princeton-nlp/SimPO 简单代码 class simpo(paddle.nn.Layer):def __init__(self):super(OrPoLoss, self).__init__()self.loss paddle.nn.CrossEntropyLoss()def forward(self,neg_logit, neg_lab, pos_logit, pos_lab,beta,gamma):neg_logit paddle.n…...

CDH6.3.2安装文档

前置环境&#xff1a; 操作系统&#xff1a; CentOS Linux release 7.7 java JDK &#xff1a; 1.8.0_231 1、准备工作 准备以下安装包&#xff1a; Cloudera Manager: cloudera-manager-agent-6.3.1-1466458.el7.x86_64.rpm cloudera-manager-daemons-6.3.1-1466458.el…...

Java实战入门:深入解析Java中的 `Arrays.sort()` 方法

文章目录 一、方法定义参数说明返回值 二、使用场景三、实现原理四、示例代码示例一&#xff1a;对整型数组排序示例二&#xff1a;对字符串数组排序示例三&#xff1a;对自定义对象数组排序 五、注意事项六、总结 在Java编程中&#xff0c;Arrays.sort() 方法是一个非常常用的…...

JavaScript的垃圾回收机制

No.内容链接1Openlayers 【入门教程】 - 【源代码示例300】 2Leaflet 【入门教程】 - 【源代码图文示例 150】 3Cesium 【入门教程】 - 【源代码图文示例200】 4MapboxGL【入门教程】 - 【源代码图文示例150】 5前端就业宝典 【面试题详细答案 1000】 文章目录 一、垃圾…...

小程序使用Canvas设置文字竖向排列

在需要使用的js页面引入js文件,传入对应参数即可 /** * 文本竖向排列 */ function drawTextVertical(context, text, x, y) {var arrText text.split();var arrWidth arrText.map(function (letter) {return 26; // 字体间距,需要自定义可以自己加参数,根据传入参数进行…...

GPT-4o:重塑人机交互的未来

一个愿意伫立在巨人肩膀上的农民...... 一、推出 在人工智能&#xff08;AI&#xff09;领域&#xff0c;自然语言处理&#xff08;NLP&#xff09;技术一直被视为连接人类与机器的桥梁。近年来&#xff0c;随着深度学习技术的快速发展&#xff0c;NLP领域迎来了前所未有的变革…...

大语言模型拆解——Tokenizer

1. 认识Tokenizer 1.1 为什么要有tokenizer&#xff1f; 计算机是无法理解人类语言的&#xff0c;它只会进行0和1的二进制计算。但是呢&#xff0c;大语言模型就是通过二进制计算&#xff0c;让你感觉计算机理解了人类语言。 举个例子&#xff1a;单1&#xff0c;双2&#x…...

Linux自动挂载服务autofs讲解

1.产生原因 2.配置文件讲解 总结&#xff1a;配置客户端&#xff0c;先构思好要挂载的目录如&#xff1a;/abc/cb 然后在autofs.master中编辑&#xff1a; /abc&#xff08;要挂载的主目录&#xff09; /etc/qwe&#xff08;在这个文件里去找要挂载的副目录&#xff0c;这个名…...

堆结构知识点复习——玩转堆结构

前言:堆算是一种相对简单的数据结构&#xff0c; 本篇文章将详细的讲解堆中的知识点&#xff0c; 包括那些我们第一次学习堆的时候容易忽略的内容&#xff0c; 本篇文章会作为重点详细提到。 本篇内容适合已经学完C语言数组和函数部分的友友们观看。 目录 什么是堆 建堆算法…...

JS数据类型运算符标准库

目录 数据类型运算符标准库对象Object对象属性描述对象Array对象包装对象Boolean对象Number对象String对象Math对象Date对象...

单片机之从C语言基础到专家编程 - 4 C语言基础 - 4.13数组

C语言中&#xff0c;有一类数据结构&#xff0c;它可以存储一组相同类型的元素&#xff0c;并且可以通过索引访问这些元素&#xff0c;没错&#xff0c;这类数据结构就是数组。数组可以说是C语言中非常重要的数据结构之一了。使用数组可以是程序逻辑更加清晰&#xff0c;也更加…...

【码银送书第二十期】《游戏运营与出海实战:策略、方法与技巧》

市面上的游戏品种繁杂&#xff0c;琳琅满目&#xff0c;它们是如何在历史的长河中逐步演变成今天的模式的呢&#xff1f;接下来&#xff0c;我们先回顾游戏的发展史&#xff0c;然后按照时间轴来叙述游戏运营的兴起。 作者&#xff1a;艾小米 本文经机械工业出版社授权转载&a…...

String 类

目录&#xff1a; 一. 认识 String 类 二. String 类的基本用法 三. String对象的比较 四.字符串的不可变性 五. 认识 StringBuffer 和 StringBuilder 一. 认识 String 类&#xff1a; 在C语言中已经涉及到字符串了&#xff0c;但是在C语言中要表示字符串只能使用字符数组或者…...

Chromebook Plus中添加了Gemini?

Chromebook Plus中添加了Gemini&#xff1f; 前言 就在5月29日&#xff0c;谷歌宣布了一项重大更新&#xff0c;将其Gemini人工智能技术集成到Chromebook Plus笔记本电脑中。这项技术此前已应用于谷歌的其他设备。华硕和惠普已经在市场上销售的Chromebook Plus机型&#xff0c;…...

Git Large File Storage (LFS) 的安装与使用

Git Large File Storage [LFS] 的安装与使用 1. An open source Git extension for versioning large files2. Installing on Linux using packagecloud3. Getting Started4. Error: Failed to call git rev-parse --git-dir: exit status 128References 1. An open source Git…...

使用国产工作流引擎,有那些好处?

使用国产工作流引擎的好处主要体现在以下几个方面&#xff1a; 符合企业独特业务&#xff1a; 国产工作流引擎可以深入挖掘和理解企业内部各项业务流程&#xff0c;精细化地定义流程模型和规则&#xff0c;实现“以流程驱动业务”的目标。这有助于企业更好地满足其独特的业务…...

掌握 Go 语言:使用 net/http/httptrace 包优化HTTP请求

掌握 Go 语言&#xff1a;使用 net/http/httptrace 包优化HTTP请求 介绍net/http/httptrace 包的基础概述适用场景 使用httptrace进行网络请求追踪配置httptrace的基本步骤示例&#xff1a;创建一个简单的HTTP客户端&#xff0c;使用httptrace监控连接 示例&#xff1a;追踪HTT…...

探秘Flask中的表单数据处理

新书上架~&#x1f447;全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我&#x1f446;&#xff0c;收藏下次不迷路┗|&#xff40;O′|┛ 嗷~~ 目录 一、引言 二、Flask中的表单处理机制 三、Flask表单处理实战 四、处理表单数据的注意事项…...

java —— 包装类及拆箱、装箱

java 当中有 8 种基本类型对应其相应的包装类&#xff0c;分别如下&#xff1a; intIntegerbyteByteshortShortlongLongfloatFloatdoubleDoublecharCharacterbooleanBoolean 一、装箱 两种装箱方法&#xff1a; public static void main(String[] args) {Integer anew Inte…...

运算符重载(下)

目录 前置和后置重载前置的实现Date& Date::operator()代码 后置的实现Date Date::operator(int )代码 前置--和后置--重载前置--的实现Date& Date::operator--( )代码 后置--的实现Date Date::operator--(int )代码 流插入运算符重载流插入运算符重载的实现流提取运算…...

杭州服务器的性能如何?

挥洒激情&#xff0c;开启杭州服务器的无限可能&#xff01; 互联网时代&#xff0c;服务器的性能就如同一艘航空母舰&#xff0c;承载着企业的发展梦想&#xff0c;指引着行业的发展方向。而对于杭州服务器&#xff0c;其性能究竟如何&#xff1f;让我来告诉您。 杭州服务器…...

linux centos nfs挂载两台服务器挂载统一磁盘目录权限问题

查看用户id id 用户名另一台为 修改uid和gid为相同id&#xff0c;添加附加组 usermod -u500 -Gwheel epms groupmod -g500 epms...