当前位置: 首页 > news >正文

C++第二十二弹---vector深度剖析及模拟实现(下)

 ✨个人主页: 熬夜学编程的小林

💗系列专栏: 【C语言详解】 【数据结构详解】【C++详解】

目录

1、容量操作

2、内容修改操作

3、打印函数

4、迭代器失效

4.1、什么是迭代器失效

4.2、哪些操作会引起迭代器失效

总结


1、容量操作

size()、capacity()

获取容器的有效数据个数(连续内存空间的指针相减计算的就是间隔的元素个数)分配给当前空间的大小以元素个数表示。

size_t size() const
{return _finish - _start;
}
size_t capacity() const
{return _endofstorage - _start;
}

 reserve(size_t n)

扩容。如果n大于当前容量则扩容,小于等于当前容量则不处理。

void reserve(size_t n)//将容量个数扩大到n
{if (n > capacity())//大于容量才扩容{size_t old_size = size();T* tmp = new T[n];memcpy(tmp, _start, sizeof(T) * size());delete[] _start;//加[]_start = tmp;//_finish = _start + size();//_start的地址改变了 size()结果变化_finish = _start + old_size;_endofstorage = _start + n;}
}

这里我们开空间完成的是一个深拷贝的过程用 memcpy 将旧数组中的数据拷贝到新数组,但是memcpy 在这里基于字节的拷贝,即浅拷贝,那么,如果我们vector实例化为string类,这里string类进行浅拷贝会涉及到二次释放等问题。

解决办法:

通过一个循环,使用赋值操作符(自定义类型会调用赋值操作符重载)逐个拷贝旧数组中的元素到新数组。

void reserve(size_t n)//将容量个数扩大到n
{if (n > capacity())//大于容量才扩容{size_t old_size = size();T* tmp = new T[n];for (size_t i = 0; i < old_size; i++){tmp[i] = _start[i];//调用赋值操作符重载,深拷贝}delete[] _start;//加[]_start = tmp;//_finish = _start + size();//_start的地址改变了 size()结果变化_finish = _start + old_size;_endofstorage = _start + n;}
}

 注意:

需要提前计算原空间的大小,防止后面计算的大小是错误的,因为扩容的时候_start指针会修改指向,而_finish还指向原空间。

resize(size_t n)

调整容器的大小,使其包含n个元素。

如果n小于当前容器大小,则内容将减少到其前n个元素,删除超出的元素(并销毁它们)

如果n大于当前容器大小,则通过在末尾插入所需数量的元素来扩展内容,以达到n的大小。如果指定了val,则将新元素初始化为val,否则初始化为缺省值。

如果n也大于当前容器容量,则自动重新分配所分配的存储空间。

void resize(size_t n,const T& val=T())//将容量修改为n个,并初始化为val
{if (n > capacity()){//扩容reserve(n);while (_finish < _start + n){*_finish = val;++_finish;}}else{//删除_finish = _start + n;//更改_finish位置即可,一般不缩容}
}

注意:

当 n 小于当前容量时,只需修改 _finish 指向即可,一般情况不缩容,如需缩容,可以调用shrink_to_fit()缩容函数。

2、内容修改操作

push_back()

尾插数据。即在_finish位置插入数据,在插入数据之前需要判断空间是否已满。

void push_back(const T& val)
{if (_finish == _endofstorage)//扩容{reserve(capacity() == 0 ? 4 : 2 * capacity());}*_finish = val;++_finish;
}

 pop_back()

尾删数据(有数据才能删)。删除最后一个数据,修改_finish指向即可。

void pop_back()
{assert(!empty());--_finish;
}

empty()

判断容器是否为空(判断_start与_finish指向是否一致),为空返回true,否则返回false。 

bool empty()
{return _start == _finish;
}

insert() 

在pos位置插入数据。

1.使用断言保证在[_start,_finish]区间插入数据

2.判断是否需要扩容,扩容则可能出现迭代器失效情况,则需要提前计算pos 位置与 _start之间的距离。

3.将[pos,_finish)之间的数据都向后挪动一步,再pos位置插入数据。

4.最后返回新的pos位置。

iterator insert(iterator pos, const T& val)//在pos位置插入val
{assert(pos >= _start);assert(pos <= _finish);//扩容if (_finish == _endofstorage){size_t len = pos - _start;//标记pos与原数组起点的长度reserve(capacity() == 0 ? 4 : 2 * capacity());pos = _start + len;//扩容_start的指向修改,pos也需修改}//移动数据iterator it = _finish - 1;while (it >= pos){*(it + 1) = *it;--it;}//填充数据*pos = val;++_finish;return pos;//返回新的pos位置
}

 erase()

删除pos位置的数据。

1.使用断言保证在[_start,_finish)区间删除数据,此处跟插入不同,不能删除_finsih位置数据

2.将[pos + 1,_finish)之间的数据都向前挪动一步。

iterator erase(iterator pos)//删除pos位置数
{assert(pos >= _start);assert(pos < _finish);//iterator it = pos;iterator it = pos + 1;while (it < _finish){//*it = *(it + 1);//it = pos; 越界*(it - 1) = *it;it++;}--_finish;return pos;
}

erase 返回值是一个迭代器,指向原来pos位置的下一个位置,即删除操作之后的pos位置。

push_back()  pop_back()

尾插和尾删函数,使用insert()和erase()函数调用。

void push_back(const T& val)
{insert(end(), val);//在end()位置插入数据
}void pop_back()
{erase(end() - 1);//删除end()前面位置数据
}

3、打印函数

print_vector()

打印vector容器的数据(任意类型)。

template<class T>//函数模板
void print_vector(const vector<T>& v)
{//前面加typename则没有问题,表示iterator是一个类型//typename vector<T>::iterator it = v.begin();auto it = v.begin();//此处使用auto则可以避免此问题while (it != v.end()){cout << *it << " ";it++;//指向下一个位置}cout << endl;
}

 注意:

显示访问迭代器时,需要在前面加关键字typename保证iterator是一个类型,或者直接使用auto。

4、迭代器失效

4.1、什么是迭代器失效

迭代器的作用主要作用就是让算法能够不用关心底层数据结构,其底层实际就是一个指针,或者是对指针进行了封装。

迭代器失效,实际就是迭代器底层对应指针所指向的空间被销毁了,而使用一块已经被释放的空间,造成的后果是程序崩溃(即如果继续使用已经失效的迭代器,程序可能会崩溃)。我们可以从以下三步进行分析:

  • [1]迭代器的本质就是指针迭代器失效就是指针失效
  • [2]指针失效指针指向的空间是非法的
  • [3]指针指向非法空间:指向了被释放的空间 或者 越界访问 。

4.2、哪些操作会引起迭代器失效

  1. 所有可能会引起扩容的操作都可能会导致迭代器失效。如:resize、reserve、insert、assign、push_back等  --------------  野指针引起的迭代器失效
  2. 指定位置的插入和删除都会都可能会导致迭代器失效。如: insert 、erase -----------------   迭代器指向的位置意义发生改变

注意:

上述可能会引起迭代器失效的问题,代码中基本已经解决,如果uu们发现解决的有问题可以私信博主喔!!!

总结


本篇博客就结束啦,谢谢大家的观看,如果公主少年们有好的建议可以留言喔,谢谢大家啦!

相关文章:

C++第二十二弹---vector深度剖析及模拟实现(下)

✨个人主页&#xff1a; 熬夜学编程的小林 &#x1f497;系列专栏&#xff1a; 【C语言详解】 【数据结构详解】【C详解】 目录 1、容量操作 2、内容修改操作 3、打印函数 4、迭代器失效 4.1、什么是迭代器失效 4.2、哪些操作会引起迭代器失效 总结 1、容量操作 size()…...

GD32F470+lwip 丢包问题分析及解决

最近在用GD32和管理机之间用TCP协议开发一个功能&#xff0c;功能都没问题&#xff0c;后面跑大量发包时候的连续测试时&#xff0c;总是会出现偶发性的&#xff0c;大概几分钟到数十分钟的一次丢包。尽管在应用层做了超时机制&#xff0c;一旦超时就会重新建立socket链接并重新…...

好用的电子杂志制作平台分享

随着数字媒体的发展&#xff0c;电子杂志逐渐成为了一种流行的新媒体形式。它不仅能够吸引读者的眼球&#xff0c;还能够帮助创作者展示自己的才华。现在&#xff0c;许多电子杂志制作平台应运而生&#xff0c;让创作者可以轻松地制作出高质量的作品。 今天就给大家推荐一款好用…...

“云原生安全:构建弹性且安全的云上环境的关键要素“

云原生安全是指在设计和实施云原生应用时&#xff0c;从一开始就将安全性融入到每一个环节&#xff0c;确保云环境既具备弹性又安全可靠。构建一个既弹性又安全的云上环境&#xff0c;关键要素包括以下几个方面&#xff1a; 1. 微服务架构&#xff1a;采用微服务架构可以提高系…...

燃气安全阀检验维修:守护家庭安全的必备知识

燃气作为现代生活中不可或缺的重要能源&#xff0c;其安全使用直接关系到人民群众的生命财产安全。 燃气安全阀作为保障燃气系统安全运行的关键部件&#xff0c;一旦发生泄露&#xff0c;必须迅速采取有效措施进行排查、检验、维修&#xff0c;并建立长效机制进行预防和维护。…...

【JavaEE】多线程(1)

&#x1f386;&#x1f386;&#x1f386;个人主页&#x1f386;&#x1f386;&#x1f386; &#x1f386;&#x1f386;&#x1f386;JavaEE专栏&#x1f386;&#x1f386;&#x1f386; &#x1f386;&#x1f386;&#x1f386;计算机是怎么工作的&#x1f386;&#x1f3…...

相对位姿估计

相对位姿估计 示意图 理论推导 离线数据库&#xff1a; P的位置 P [ X , Y , Z ] T P[X,Y,Z]^{T} P[X,Y,Z]T 相机内参 k 1 k_{1} k1​ 安卓手机&#xff1a; 相机内参 k 2 k_{2} k2​ 两个像素点位置 &#xff1a; p 1 和 p 2 p_1和p_2 p1​和p2​ 公式一&#xff1a;…...

记一次 .NET某工业设计软件 崩溃分析

一&#xff1a;背景 1. 讲故事 前些天有位朋友找到我&#xff0c;说他的软件在客户那边不知道什么原因崩掉了&#xff0c;从windows事件日志看崩溃在 clr 里&#xff0c;让我能否帮忙定位下&#xff0c;dump 也抓到了&#xff0c;既然dump有了&#xff0c;接下来就上 windbg …...

2020 6.s081——Lab5:Lazy page allocation

再来是千年的千年 不变是眷恋的眷恋 飞越宇宙无极限 我们永不说再见 ——超兽武装 完整代码见&#xff1a;SnowLegend-star/6.s081 at lazy (github.com) Eliminate allocation from sbrk() (easy) 顾名思义&#xff0c;就是去掉sbrk()中调用growproc()的部分。1s完事儿。 Laz…...

华为认证学习笔记:生成树

以太网交换网络中为了进行链路备份&#xff0c;提高网络可靠性&#xff0c;通常会使用冗余链路。但是使用冗余链路会在交换网络上产生环路&#xff0c;引发广播风暴以及MAC地址表不稳定等故障现象&#xff0c;从而导致用户通信质量较差&#xff0c;甚至通信中断。为解决交换网络…...

leetcode 97.交错字符串

思路&#xff1a;LCS 其实也是同一个类型的题目&#xff0c;一般涉及到这种子序列的字符串问题的时候&#xff0c;状态的设置基本上都应该是以...结尾为状态的。这里同样&#xff0c;设置用dp[i][j]为s1,s2字符以i&#xff0c;j结尾能否拼接成s3[ij]。 那么&#xff0c;首先就…...

The Missing Semester ( Shell 工具和脚本 和 Vim)

管道符号 &#xff08;1&#xff09;管道符号 | 将前一个命令的输出作为下一个命令的输入 例如&#xff1a; 以下为 ./semester输出中提取包含 "Last-Modified" 的行并写入文件 last-modified.txt./semester | grep "Last-Modified" > ~/last-modif…...

【Uniapp微信小程序】自定义水印相机、微信小程序地点打卡相机

效果图 template 下方的image图片自行寻找替换&#xff01; <template><view><camerav-if"!tempImagePath && cameraHeight ! 0":resolution"high":frame-size"large":device-position"device":flash"f…...

SimPO: Simple Preference Optimization with a Reference-Free Reward

https://github.com/princeton-nlp/SimPO 简单代码 class simpo(paddle.nn.Layer):def __init__(self):super(OrPoLoss, self).__init__()self.loss paddle.nn.CrossEntropyLoss()def forward(self,neg_logit, neg_lab, pos_logit, pos_lab,beta,gamma):neg_logit paddle.n…...

CDH6.3.2安装文档

前置环境&#xff1a; 操作系统&#xff1a; CentOS Linux release 7.7 java JDK &#xff1a; 1.8.0_231 1、准备工作 准备以下安装包&#xff1a; Cloudera Manager: cloudera-manager-agent-6.3.1-1466458.el7.x86_64.rpm cloudera-manager-daemons-6.3.1-1466458.el…...

Java实战入门:深入解析Java中的 `Arrays.sort()` 方法

文章目录 一、方法定义参数说明返回值 二、使用场景三、实现原理四、示例代码示例一&#xff1a;对整型数组排序示例二&#xff1a;对字符串数组排序示例三&#xff1a;对自定义对象数组排序 五、注意事项六、总结 在Java编程中&#xff0c;Arrays.sort() 方法是一个非常常用的…...

JavaScript的垃圾回收机制

No.内容链接1Openlayers 【入门教程】 - 【源代码示例300】 2Leaflet 【入门教程】 - 【源代码图文示例 150】 3Cesium 【入门教程】 - 【源代码图文示例200】 4MapboxGL【入门教程】 - 【源代码图文示例150】 5前端就业宝典 【面试题详细答案 1000】 文章目录 一、垃圾…...

小程序使用Canvas设置文字竖向排列

在需要使用的js页面引入js文件,传入对应参数即可 /** * 文本竖向排列 */ function drawTextVertical(context, text, x, y) {var arrText text.split();var arrWidth arrText.map(function (letter) {return 26; // 字体间距,需要自定义可以自己加参数,根据传入参数进行…...

GPT-4o:重塑人机交互的未来

一个愿意伫立在巨人肩膀上的农民...... 一、推出 在人工智能&#xff08;AI&#xff09;领域&#xff0c;自然语言处理&#xff08;NLP&#xff09;技术一直被视为连接人类与机器的桥梁。近年来&#xff0c;随着深度学习技术的快速发展&#xff0c;NLP领域迎来了前所未有的变革…...

大语言模型拆解——Tokenizer

1. 认识Tokenizer 1.1 为什么要有tokenizer&#xff1f; 计算机是无法理解人类语言的&#xff0c;它只会进行0和1的二进制计算。但是呢&#xff0c;大语言模型就是通过二进制计算&#xff0c;让你感觉计算机理解了人类语言。 举个例子&#xff1a;单1&#xff0c;双2&#x…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录

ASP.NET Core 是一个跨平台的开源框架&#xff0c;用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录&#xff0c;以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

2021-03-15 iview一些问题

1.iview 在使用tree组件时&#xff0c;发现没有set类的方法&#xff0c;只有get&#xff0c;那么要改变tree值&#xff0c;只能遍历treeData&#xff0c;递归修改treeData的checked&#xff0c;发现无法更改&#xff0c;原因在于check模式下&#xff0c;子元素的勾选状态跟父节…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...