当前位置: 首页 > news >正文

JCR一区级 | Matlab实现TCN-BiLSTM-MATT时间卷积双向长短期记忆神经网络多特征分类预测

JCR一区级 | Matlab实现TCN-BiLSTM-MATT时间卷积双向长短期记忆神经网络多特征分类预测

目录

    • JCR一区级 | Matlab实现TCN-BiLSTM-MATT时间卷积双向长短期记忆神经网络多特征分类预测
      • 分类效果
      • 基本介绍
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本介绍

1.JMatlab实现TCN-BiLSTM-MATT时间卷积双向长短期记忆神经网络多特征分类预测,TCN-BiLSTM-Multihead-Attention;
多头自注意力层 (Multihead-Self-Attention):Multihead-Self-Attention多头注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。注意力能够帮助模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中的关键信息。
2.数据输入12个特征,输出4个类别,main.m是主程序,其余为函数文件,无需运行;
3.可视化展示分类准确率;
4.运行环境matlab2023b及以上。

在这里插入图片描述

在这里插入图片描述

程序设计

  • 完整程序和数据获取方式私信博主回复Matlab实现TCN-BiLSTM-MATT时间卷积双向长短期记忆神经网络多特征分类预测。
%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  读取数据
res = xlsread('data.xlsx');%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_dim = size(res, 2) - 1;               % 特征维度
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)
flag_conusion = 1;                        % 标志位为1,打开混淆矩阵(要求2018版本及以上)%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];%%  划分数据集
for i = 1 : num_classmid_res = res((res(:, end) == i), :);           % 循环取出不同类别的样本mid_size = size(mid_res, 1);                    % 得到不同类别样本个数mid_tiran = round(num_size * mid_size);         % 得到该类别的训练样本个数P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出
end%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';%%  得到训练集和测试样本个数
M = size(P_train, 2);
N = size(P_test , 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test  = mapminmax('apply', P_test, ps_input);t_train =  categorical(T_train);
t_test  =  categorical(T_test );T_sim1 = T_sim1(index_1);
T_sim2 = T_sim2(index_2);
%% 性能评价
error1 = sum((T_sim1' == T_train))/M * 100 ;
error2 = sum((T_sim2' == T_test))/N * 100 ;%%  混淆矩阵
figure
cm = confusionchart(T_train, T_sim1);
cm.Title = 'Confusion Matrix for Train Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';figure
cm = confusionchart(T_test, T_sim2);
cm.Title = 'Confusion Matrix for Test Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关文章:

JCR一区级 | Matlab实现TCN-BiLSTM-MATT时间卷积双向长短期记忆神经网络多特征分类预测

JCR一区级 | Matlab实现TCN-BiLSTM-MATT时间卷积双向长短期记忆神经网络多特征分类预测 目录 JCR一区级 | Matlab实现TCN-BiLSTM-MATT时间卷积双向长短期记忆神经网络多特征分类预测分类效果基本介绍程序设计参考资料 分类效果 基本介绍 1.JMatlab实现TCN-BiLSTM-MATT时间卷积双…...

redis之发布与订阅

华子目录 什么是发布与订阅?常用命令psubscribe pattern1 [pattern2...]subscribe channel1 [channel2...]publish channel messagepunsubscribe pattern1 [pattern2...]unsubscribe [channel1 [channel2...]]pubsub subcommand argument1 [argument2...] 示例1示例…...

LLM主流开源代表模型

LLM主流开源大模型介绍 1 LLM主流大模型类别 随着ChatGPT迅速火爆,引发了大模型的时代变革,国内外各大公司也快速跟进生成式AI市场,近百款大模型发布及应用。 目前,市面上已经开源了各种类型的大语言模型,本章节我们…...

Openharmony的usb从框架到hdf驱动流程梳理

​ HDF框架实现了用户层与内核层进行通信的管理框架,关于其简易通信示例在以下两篇博文中有所介绍, 一个例子了解通过Openharmony的HDF框架实现简易驱动的流程https://blog.csdn.net/procedurecode/article/details/128906246 Openharmony的用户态应用通过HDF框架驱动消息机制…...

Apache Doris 基础 -- 数据表设计(数据模型)

Versions: 2.1 1、模型概览 本主题从逻辑角度介绍了Doris中的数据模型,以便您可以在不同的业务场景中更好地使用Doris。 基本概念 本文主要从逻辑的角度描述Doris的数据模型,旨在帮助用户在不同的场景更好地利用Doris。 在Doris中,数据在…...

“雪糕刺客”爆改“红薯刺客”,钟薛高给了消费品牌哪些启示?

夏日袭来,一支价格高昂却让人眼前一亮的雪糕,曾一度成为市场热议的焦点。然而,随着消费者对性价比的日益关注,曾经的“雪糕刺客”钟薛高,其创始人林盛近期以直播带货红薯开启他的还债之路,高打情怀“直播自…...

多输入多输出非线性对象的模型预测控制—Matlab实现

本示例展示了如何在 Simulink 中设计多输入多输出对象的闭环模型预测控制。该对象有三个操纵变量和两个测量输出。 一、非线性对象的线性化 运行该示例需要同时安装 Simulink 和 Simulink Control Design。 % 检查是否同时安装了 Simulink 和 Simulink Control Design if ~m…...

多项分布模拟及 Seaborn 可视化教程

多项分布 简介 多项分布是二项分布的推广,它描述了在 n 次独立试验中,k 种不同事件分别出现次数的离散概率分布。与二项分布只能有两种结果(例如成功/失败)不同,多项分布可以有 k 种(k ≥ 2)及…...

学计算机,我错了吗?

今天,我的一位朋友告诉我,终于找到一家小公司入职,年前 1 月辞职,本想休息一段时间,没成想,休息到 6 月份,现在程序员真的越来越难找工作了。 肯定有人在想,现在这种行情&#xff0…...

学习小心意——简单的循坏语句

for循坏 基本语法格式 for 变量 in 序列:代码块 示例代码如下 for i in range(10):print(i)#输出结果:0 1 2 3 4 5 6 7 8 9 简单案例代码如下 利用for语句遍历序列 # 遍历字符串打印每个字母 for letter in "python":print(letter)# 遍历列表并打印每个元素 a …...

C++ 类方法解析:内外定义、参数、访问控制与静态方法详解

C 类方法 类方法,也称为成员函数,是属于类的函数。它们用于操作或查询类数据,并封装在类定义中。类方法可以分为两种类型: 类内定义方法: 直接在类定义内部声明和定义方法。类外定义方法: 在类定义内部声明方法,并在…...

pytorch+YOLOv8-1

1.工具开发 2.idea配置pytorch环境 默认安装新版本torch pip install torch 3.pytorch验证 4. print(torch.cuda.is_available()) 输出结果为 False 说明我只能用cpu...

JavaScript 基础 - 对象

对象 对象是一种无序的数据集合&#xff0c;可以详细的描述描述某个事物。 注意数组是有序的数据集合。它由属性和方法两部分构成。 语法 声明一个对象类型的变量与之前声明一个数值或字符串类型的变量没有本质上的区别。 <script>let 对象名 {属性名&#xff1a;属性值…...

代码随想录第23天|回溯part3 组合与分割

39.组合总和 class Solution { public:vector<vector<int>> res;vector<int> path;void backTracking(vector<int>& candidates,int target,int sum,int n,int step){if(n > 150) return;if(sum > target) return;if(sum target){res.push_…...

nginx和proxy_protocol协议

目录 1. 引言2. HTTP server的配置3. Stream server的配置3.1 作为proxy_protocol的前端服务器3.2 作为proxy_protocol的后端服务器1. 引言 proxy_protocol 是haproxy开发的一种用于在代理服务器和后端服务器之间传递客户端连接信息的协议。使用 proxy_protocol 的主要优势是能…...

【pytorch】数据转换/增强后保存

数据转换 from PIL import Image from pathlib import Path import matplotlib.pyplot as plt import numpy as npimport torch import torchvision.transforms as Tplt.rcParams["savefig.bbox"] = tight # orig_im...

超越Devin!姚班带队,他们创大模型编程新世界纪录

超越Devin&#xff01;SWEBench排行榜上迎来了新玩家—— StarShip CodeGen Agent&#xff0c;姚班带队初创公司OpenCSG出品&#xff0c;以23.67%的成绩获得全球第二名的成绩。 同时创造了非GPT-4o基模的最高纪录&#xff08;SOTA&#xff09;。 我们都知道&#xff0c;SWEBe…...

江苏大信环境科技有限公司:环保领域的开拓者与引领者

2009 年&#xff0c;江苏大信环境科技有限公司在宜兴环保科技工业园成立。自创立之始&#xff0c;该公司便笃定坚守“诚信为本、以质量求生存、以创新谋发展”这一经营理念&#xff0c;全力以赴为客户构建专业的工业有机废气治理整体解决方案&#xff0c;进而成为国家高新技术企…...

关于 Bean 容器的注入方式,99 % 的人都答不全!

引言&#xff1a;在使用 Spring 框架开发应用程序时&#xff0c;依赖注入是一个至关重要的概念。而对于 Bean 容器的注入方式&#xff0c;虽然我们可能都有一定的了解&#xff0c;但实际上很多人在被问及这个问题时可能并不能完整地回答。本文将深入探讨 Spring 中 Bean 容器的…...

Spring的@Async注解及其用途

Spring 的 Async 注解是 Spring Framework 4.2 版本引入的功能&#xff0c;它用于支持异步方法执行。当一个方法标注了 Async&#xff0c;Spring 会在一个单独的线程中调用该方法&#xff0c;从而不会阻塞主线程的执行。 Async 注解的用途&#xff1a; 提高性能&#xff1a;通…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装&#xff08;Encapsulation&#xff09; 定义&#xff1a;将数据&#xff08;属性&#xff09;和操作数据的方法绑定在一起&#xff0c;通过访问控制符&#xff08;private、protected、public&#xff09;隐藏内部实现细节。示例&#xff1a; public …...

css实现圆环展示百分比,根据值动态展示所占比例

代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案

随着新能源汽车的快速普及&#xff0c;充电桩作为核心配套设施&#xff0c;其安全性与可靠性备受关注。然而&#xff0c;在高温、高负荷运行环境下&#xff0c;充电桩的散热问题与消防安全隐患日益凸显&#xff0c;成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

OD 算法题 B卷【正整数到Excel编号之间的转换】

文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的&#xff1a;a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...

Java 与 MySQL 性能优化:MySQL 慢 SQL 诊断与分析方法详解

文章目录 一、开启慢查询日志&#xff0c;定位耗时SQL1.1 查看慢查询日志是否开启1.2 临时开启慢查询日志1.3 永久开启慢查询日志1.4 分析慢查询日志 二、使用EXPLAIN分析SQL执行计划2.1 EXPLAIN的基本使用2.2 EXPLAIN分析案例2.3 根据EXPLAIN结果优化SQL 三、使用SHOW PROFILE…...