当前位置: 首页 > news >正文

16-云原生监控体系-rabbitmq_exporter监控 RabbitMQ-[部署Dashborad告警规则实战]

文章目录

  • 1. 二进制方式部署
    • 1.1. 二进制包下载和部署
    • 1.2. 配置
      • 1.2.1. 可用的环境变量
      • 1.2.2. 使用变量
  • 2. docker-compose 方式部署
  • 3. 配置到 Prometheus
  • 3. Metrics
    • 3.1. 全局
    • 3.2. 基础信息
    • 3.3. Queues
      • 3.3.1 Queues - Gauge
      • 3.3.2. Queues - Counter

相关文章:

16-云原生监控体系-rabbitmq_exporter监控 RabbitMQ-[部署Dashborad告警规则实战]

文章目录 1. 二进制方式部署1.1. 二进制包下载和部署1.2. 配置1.2.1. 可用的环境变量1.2.2. 使用变量2. docker-compose 方式部署3. 配置到 Prometheus3. Metrics3.1. 全局3.2. 基础信息3.3. Queues3.3.1 Queues - Gauge3.3.2. Queues - Counter...

四大运营商频段-2024

四大运营商频段-2023 中国移动900MHz(Band8),889-904/934-949MHz:1.8GHz(Band3),1710-1735/1805-1830MHz:1.9GHz(Band39),1885-1915MHz:2GHz(Band34),2010-2025MHz:2.3GHz(Band40),2320-2370MHz:2.6GHz(Band41,n41),25…...

260只出现一次的数字

一&#xff1a;题目描述 二&#xff1a;思路讲解 三&#xff1a;代码 class Solution { public:vector<int> singleNumber(vector<int>& nums) {int sum 0;for(const int& e : nums){sum ^ e;}int l (sum INT_MIN ? sum : sum&(-sum));int sum1 0…...

【高阶数据结构(八)】跳表详解

&#x1f493;博主CSDN主页:杭电码农-NEO&#x1f493;   ⏩专栏分类:高阶数据结构专栏⏪   &#x1f69a;代码仓库:NEO的学习日记&#x1f69a;   &#x1f339;关注我&#x1faf5;带你学习更多数据结构   &#x1f51d;&#x1f51d; 高阶数据结构 1. 前言2. 跳表的概…...

用旧安卓手机当 linux 开发机

1. 下载 Termux (快速链接&#xff0c;如果失效或者要下载最新版请去github release 下载 ) 注意手机硬件&#xff0c;我这个是 64 的所以下 64 的 https://github.com/termux/termux-app/releases/download/v0.118.0/termux-app_v0.118.0github-debug_arm64-v8a.apk 2. 弄到…...

discuz如何添加主导航

大家好&#xff0c;今天教大家怎么样给discuz添加主导航。方法其实很简单&#xff0c;大家跟着我操作既可。一个网站的导航栏是非常重要的&#xff0c;一般用户进入网站的第一印象就是看网站的导航栏。如果大家想看效果的话可以搜索下网创有方&#xff0c;或者直接点击查看效果…...

[每日一练]患某种疾病的患者,正则表达式的匹配

该题目来源于力扣&#xff1a; 1527. 患某种疾病的患者 - 力扣&#xff08;LeetCode&#xff09; 题目要求&#xff1a; 患者信息表&#xff1a; Patients ----------------------- | Column Name | Type | ----------------------- | patient_id | int | | pati…...

PHP身份证识别接口、线上平台如何实现身份证实名认证功能?

线上平台实现身份证实名认证的功能&#xff0c;需要结合身份证识别接口来完成。首先&#xff0c;用户通过上传身份证图片或者拍照的方式实现证件信息的提取&#xff0c;身份证实名认证接口通过对提取到的证件信息进行核验&#xff0c;以此来实现线上用户身份的实名认证&#xf…...

若依:mybatis查询的结果未映射到实体类报null

开启驼峰命名转换&#xff1a; mapUnderscoreToCamelCase: true 我的是mtybatis配置开启驼峰命名转换不生效&#xff0c;还需要在MyBatisConfig中配置 // 配置mybatis自动转驼峰 生效 sessionFactory.getObject().getConfiguration().setMapUnderscoreToCamelCase(true)&#x…...

成都百洲文化传媒有限公司电商服务可信吗?

在当今数字化浪潮席卷之下&#xff0c;电商行业蓬勃发展&#xff0c;成为推动经济增长的重要引擎。在这一领域&#xff0c;成都百洲文化传媒有限公司凭借其专业的电商服务&#xff0c;迅速崛起&#xff0c;成为行业的佼佼者。该公司不仅深谙电商市场的运营之道&#xff0c;更以…...

【递归、搜索与回溯】递归、搜索与回溯准备+递归主题

递归、搜索与回溯准备递归主题 1.递归2.搜索3.回溯与剪枝4.汉诺塔问题5.合并两个有序链表6.反转链表7.两两交换链表中的节点8.Pow(x, n)-快速幂&#xff08;medium&#xff09; 点赞&#x1f44d;&#x1f44d;收藏&#x1f31f;&#x1f31f;关注&#x1f496;&#x1f496; 你…...

MVC前端怎么写:深入解析与实战指南

MVC前端怎么写&#xff1a;深入解析与实战指南 在Web开发领域&#xff0c;MVC&#xff08;Model-View-Controller&#xff09;是一种广泛使用的架构模式&#xff0c;它将应用程序的数据、界面和控制逻辑分离&#xff0c;使得代码更加清晰、易于维护。本文将详细探讨MVC前端如何…...

LINUX网络设置

一、1.1.ifconfig&#xff1a;当前设备正在启动的网卡&#xff08;启动的&#xff09; ifconfig -a &#xff1a;当前所有设备的网卡&#xff08;启动的和没有启动的都包括&#xff09; 1.2.ifconfig展示的ens33各行含意&#xff1a; 1.2.1 ens33: flags 4163<UP, …...

双指针解题

验证回文数&#xff08;验证回文数-CSDN博客&#xff09;和判断在子序列&#xff08;判断子序列-CSDN博客&#xff09;已经在之前进行了计算&#xff0c;今天有三个新的双指针问题&#xff1a; 两数之和II—输入有序数组 给你一个下标从 1 开始的整数数组 numbers &#xff0…...

【Text2SQL 论文】DIN-SQL:分解任务 + 自我纠正 + in-context 让 LLM 完成 Text2SQL

论文&#xff1a;DIN-SQL: Decomposed In-Context Learning of Text-to-SQL with Self-Correction ⭐⭐⭐⭐ NeurIPS 2023, arXiv:2304.11015 Code: Few-shot-NL2SQL-with-prompting | GitHub 文章目录 一、论文速读1.1 Schema Linking Module1.2 Classification & Decompo…...

基于Springboot+vue实现的汽车服务管理系统

作者主页&#xff1a;Java码库 主营内容&#xff1a;SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app等设计与开发。 收藏点赞不迷路 关注作者有好处 文末获取源码 技术选型 【后端】&#xff1a;Java 【框架】&#xff1a;spring…...

ROS2从入门到精通4-3:全局路径规划插件开发案例(以A*算法为例)

目录 0 专栏介绍1 路径规划插件的意义2 全局规划插件编写模板2.1 构造规划插件类2.2 注册并导出插件2.3 编译与使用插件 3 全局规划插件开发案例(A*算法)常见问题 0 专栏介绍 本专栏旨在通过对ROS2的系统学习&#xff0c;掌握ROS2底层基本分布式原理&#xff0c;并具有机器人建…...

Java学习【认识异常】

Java学习【认识异常】 认识异常异常的种类异常的作用 异常的处理方式JVM默认的处理方式捕获异常finally 多个异常的处理异常中的方法抛出异常 自定义异常 认识异常 在Java中&#xff0c;将程序执行过程中发生的不正常行为称为异常 异常的种类 Error代表的是系统级别的错误&a…...

uniapp+h5 ——微信小程序页面截屏保存在手机

web-view 需要用到 web-view &#xff0c;类似于iframe&#xff0c; 将网页嵌套到微信小程序中&#xff0c;参数传递等&#xff1b; 示例&#xff08;无法实时传递数据&#xff09;&#xff0c;页面销毁时才能拿到h5传递的数据&#xff0c;只能利用这点点击跳转到小程序另一个…...

三、基于图像分类预训练编码及图神经网络的预测模型 【框图+源码】

背景&#xff1a; 抽时间补充&#xff0c;先挖个坑。 一、模型结构 二、源码...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录

ASP.NET Core 是一个跨平台的开源框架&#xff0c;用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录&#xff0c;以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势&#xff1a;专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发&#xff0c;是一款收费低廉但功能全面的Windows NAS工具&#xff0c;主打“无学习成本部署” 。与其他NAS软件相比&#xff0c;其优势在于&#xff1a; 无需硬件改造&#xff1a;将任意W…...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包&#xff1a;import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序&#xff08;自然排序和定制排序&#xff09;Arrays.binarySearch()通过二分搜索法进行查找&#xff08;前提&#xff1a;数组是…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容&#xff08;一&#xff09;CDN 基础概念1. 定义2. 组成部分 &#xff08;二&#xff09;CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 &#xff08;三&#xff09;CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

Java + Spring Boot + Mybatis 实现批量插入

在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法&#xff1a;使用 MyBatis 的 <foreach> 标签和批处理模式&#xff08;ExecutorType.BATCH&#xff09;。 方法一&#xff1a;使用 XML 的 <foreach> 标签&#xff…...

WebRTC从入门到实践 - 零基础教程

WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC&#xff1f; WebRTC&#xff08;Web Real-Time Communication&#xff09;是一个支持网页浏览器进行实时语音…...

区块链技术概述

区块链技术是一种去中心化、分布式账本技术&#xff0c;通过密码学、共识机制和智能合约等核心组件&#xff0c;实现数据不可篡改、透明可追溯的系统。 一、核心技术 1. 去中心化 特点&#xff1a;数据存储在网络中的多个节点&#xff08;计算机&#xff09;&#xff0c;而非…...

数据结构:递归的种类(Types of Recursion)

目录 尾递归&#xff08;Tail Recursion&#xff09; 什么是 Loop&#xff08;循环&#xff09;&#xff1f; 复杂度分析 头递归&#xff08;Head Recursion&#xff09; 树形递归&#xff08;Tree Recursion&#xff09; 线性递归&#xff08;Linear Recursion&#xff09;…...