当前位置: 首页 > news >正文

在RT-Thread下为MPU手搓以太网MAC驱动-4

文章目录

    • MAC驱动里面对MDIO的支持
    • MAC驱动与MDIO总线

这是个人驱动开发过程中做的一些记录,仅代表个人意见和理解,不喜勿喷

  • MAC驱动需要支持不同的PHY芯片

MAC驱动里面对MDIO的支持

在第一篇文章中提到对MAC设备做出了抽象,其中MAC抽象里面有提供通过MDIO总线去访问PHY寄存器的读写操作接口(有省去其他操作接口)

struct h3_macplib_ops
{int32_t  (*macdev_writephy)(mac_dev *const dev, uint16_t addr, uint16_t reg, uint16_t data);int32_t  (*macdev_readphy) (mac_dev *const dev, uint16_t addr, uint16_t reg, uint16_t *val);
};

那我们同时也需要实现一个MDIO设备驱动,因为在RT-Thread下也有定义MDIO相关的操作接口。

struct rt_mdio_bus_ops
{rt_bool_t (*init)(void *bus, rt_uint32_t src_clock_hz);rt_size_t (*read)(void *bus, rt_uint32_t addr, rt_uint32_t reg, void *data, rt_uint32_t size);rt_size_t (*write)(void *bus, rt_uint32_t addr, rt_uint32_t reg, void *data, rt_uint32_t size);rt_bool_t (*uninit)(void *bus);
};struct rt_mdio_bus
{void *hw_obj;char *name;struct rt_mdio_bus_ops *ops;
};

我们可以看到在RT-Thread下对MDIO设备和驱动接口也做了抽象的定义,比如MDIO驱动的操作接口包括初始化、读、写和解除初始化操作。对于MDIO设备,其包含对应的硬件内容,MDIO设备名和操作接口

static struct rt_mdio_bus_ops h3_mdiobus_ops =
{.init   = h3_mdioplib_init,.read   = h3_mdioplib_read,.write  = h3_mdioplib_write,.uninit = RT_NULL,
};

在mac驱动下,MDIO设备驱动的读取接口实现如下,在这个驱动接口实现中,我们通过获取MDIO总线下包含的硬件信息,做一个类型的强制转换,获取到了指向macplib_dev实例的指针,然后就可以通过这个macplib_dev访问mac设备抽象接口提供的PHY寄存器访问操作,实现了MDIO的读操作,整个代码还是相当的简单。

static rt_size_t h3_mdioplib_read(void *bus, rt_uint32_t addr,rt_uint32_t reg, void *data, rt_uint32_t size)
{rt_uint16_t val;rt_uint32_t *data_ptr = (rt_uint32_t *)data;struct h3_macplib_dev *macplib_dev;struct rt_mdio_bus    *mdioplib_bus = (struct rt_mdio_bus *)bus;RT_ASSERT(data != NULL);RT_ASSERT(bus  != NULL);if (4 != size) {return 0;}macplib_dev = (struct h3_macplib_dev *)mdioplib_bus->hw_obj;macplib_dev->mac_ops->macdev_readphy(&macplib_dev->mac_dev,(rt_uint16_t)addr, (rt_uint16_t)reg,&val);/* Get data from MII register. */*data_ptr = (rt_uint32_t)val;return 4;
}

在mac驱动下另外一个需要注意的地方是,mac驱动需要提供一个类似mdio驱动查找接口,用于PHY设备在初始化的时候,查找需要的MDIO设备驱动接口,用来实现对PHY寄存器的访问,代码实现如下。

rt_mdio_t *h3_mdioplib_search(const char *name)
{rt_uint32_t table_sz = sizeof(h3_macplib_devtable)/sizeof(uint32_t);struct h3_macplib_dev *macplib_dev;for (uint32_t i = 1; i < table_sz; i++){macplib_dev = h3_macplib_devtable[i];if (rt_strcmp(name, macplib_dev->rt_mdiobus.name) == 0){return &macplib_dev->rt_mdiobus;}}return NULL;
}

在PHY驱动中,对PHY设备的抽象定义时,增加了一个mdio_name的定义,用于定义该PHY设备对应的MDIO总线设备名,然后PHY设备可以通过该mdio_name名字,去查找到对应的MDIO总线设备。

struct h3_kszplib_dev
{const char *phy_name;uint32_t    phy_addr;const char *mdio_name;struct rt_phy_device rt_phydev;
} ;
static rt_phy_status h3_ksz9plib_init(struct rt_phy_device *phy, void *object,rt_uint32_t phy_addr, rt_uint32_t src_clock_hz)
{rt_bool_t ret;rt_phy_status result  = PHY_STATUS_FAIL;rt_uint32_t counter   = PHY_TIMEOUT_COUNT;rt_uint32_t regval    = 0;rt_uint32_t deviceID  = 0;struct rt_mdio_bus    *mdio_bus;struct h3_kszplib_dev *kszplib_dev;RT_ASSERT(phy != RT_NULL);kszplib_dev = rt_container_of(phy, struct h3_kszplib_dev, rt_phydev);mdio_bus    = h3_mdioplib_search(kszplib_dev->mdio_name);RESULT_MATCH_CHECK(mdio_bus, RT_NULL, outs)kszplib_dev->phy_addr = phy_addr;phy->bus              = mdio_bus;phy->addr             = phy_addr;ret = mdio_bus->ops->init(mdio_bus, src_clock_hz);NOT_MATCH_CHECK(ret, RT_TRUE, outs)/* Initialization after PHY stars to work. */do{h3_kszplib_read(phy, GMII_PHYID1, &deviceID);counter--;} while ((deviceID != GMII_PHYID1_KSZ9131) && (counter != 0));RESULT_MATCH_CHECK(counter, 0, outs)result = h3_kszplib_read(phy, GMII_MCR, &regval);RESULT_MATCH_CHECK(result, PHY_STATUS_FAIL, outs)regval |= GMII_MCR_ANENABLE | GMII_MCR_ANRESTART;result  = h3_kszplib_write(phy, GMII_MCR, regval);RESULT_MATCH_CHECK(result, PHY_STATUS_FAIL, outs)counter = PHY_TIMEOUT_COUNT;/* Check auto negotiation complete. */do{result = h3_kszplib_read(phy, GMII_MSR, &regval);RESULT_MATCH_CHECK(result, PHY_STATUS_FAIL, outs)if ((regval & GMII_MSR_ANEGCOMPLETE) != 0){break;}} while (--counter > 1);outs:return result;
}

MAC驱动与MDIO总线

在mac设备的抽象中,由于都包含了rt_mdio_bus,因此在mac设备实例的初始化的时候,都将mac设备与其提供的mdio总线进行绑定,例如在实例初始化时的静态绑定。

struct h3_macplib_dev
{const char   *name;IRQn_Type     irqnum;H3_MAC_REGS   regs;rt_uint8_t    mac_addr[6];rt_uint8_t    dev_id;rt_uint8_t    reserved;mac_async_dev mac_dev;phy_async_dev phy_dev;const struct rt_mdio_bus_ops *mdio_ops;const struct h3_macplib_ops  *mac_ops;struct rt_mdio_bus rt_mdiobus;struct eth_device  rt_ethdev;
} ;
#if defined(BSP_USING_GMAC0) || defined(BSP_USING_EMAC0)
struct h3_macplib_dev h3_macdev0 = {.name       = "e0",.irqnum     = MAC0_IRQn,.regs       = MAC0_REGS,.dev_id     = MAC0_ID,.rt_mdiobus ={.name       = MDIO0_DEVICE_NAME,.ops        = &h3_mdiobus_ops,},.phy_dev    ={.name       = PHY0_DEVICE_NAME,.phyID1     = H3_MACPLIB_PHY0ID1,.phyID2     = H3_MACPLIB_PHY0ID2,.phyaddr    = PHY0_DEVICE_ADDRESS,},.mac_ops    = &h3_macdev_ops,
};
#endif

初始化时的绑定(仅展示部分相关代码)。

int h3_macplib_init(void)
{rt_err_t    state;rt_uint32_t table_sz = sizeof(h3_macplib_devtable)/sizeof(uint32_t);struct h3_macplib_dev *macplib_dev;for (uint32_t i = 1; i < table_sz; i++){macplib_dev = h3_macplib_devtable[i];macplib_dev->mac_dev.devid     = macplib_dev->dev_id;macplib_dev->rt_mdiobus.hw_obj = (void *)macplib_dev;}
}

到此为止,mac驱动接口、PHY驱动接口和MDIO驱动接口,设备的抽象、接口的实现以及彼此之间的关系讲解完成。

相关文章:

在RT-Thread下为MPU手搓以太网MAC驱动-4

文章目录 MAC驱动里面对MDIO的支持MAC驱动与MDIO总线 这是个人驱动开发过程中做的一些记录&#xff0c;仅代表个人意见和理解&#xff0c;不喜勿喷 MAC驱动需要支持不同的PHY芯片 MAC驱动里面对MDIO的支持 在第一篇文章中提到对MAC设备做出了抽象&#xff0c;其中MAC抽象里面有…...

可的哥(Codigger)推出Monaco编辑器插件,提升编程体验

Monaco编辑器&#xff0c;作为业界领先的代码编辑器&#xff0c;在编程体验中发挥着不可或缺的重要作用&#xff0c;能够在多种编程语言和开发环境中表现出色&#xff0c;为开发者提供高效、便捷的编程环境。可的哥&#xff08;Codigger&#xff09;在应用商店上线Monaco编辑器…...

为什么选择mobx

对于React而言&#xff0c;大家熟能而详的是redux&#xff0c;但我们的项目用的是mobx&#xff0c;接下来就让我给你详细说下它的优势和不足&#xff0c;可以参考。 MobX是什么&#xff1f; MobX 是一种简单易用的状态管理库&#xff0c;它采用基于观察者的模式&#xff0c;可…...

如何解决段转储问题

非常恶心 &#xff0c;这个问题困了我一个月&#xff0c;怀疑过代码有问题 &#xff0c;怀疑过数据集没处理好&#xff0c;怀疑过环境没有配置好&#xff0c;尝试改动&#xff0c;跑过很多次&#xff0c;还是段转储报错卡住。。。 然后一个月荒废&#xff0c;打算放弃这个模型…...

【杂谈】AIGC之ChatGPT-与智能对话机器人的奇妙对话之旅

与智能对话机器人的奇妙对话之旅 引言 在数字时代的浪潮中&#xff0c;ChatGPT如同一位智慧的旅伴&#xff0c;它不仅能够与我们畅谈古今&#xff0c;还能解答我们的疑惑&#xff0c;成为我们探索知识海洋的得力助手。今天&#xff0c;就让我们走进ChatGPT的世界&#xff0c;…...

CentOS7配置国内清华源并安装docker-ce以及配置docker加速

说明 由于国内访问国外的网站包括docker网站&#xff0c;由于种种的原因经常打不开&#xff0c;或无法访问&#xff0c;所以替换成国内的软件源和国内镜像就是非常必要的了&#xff0c;这里整理了我安装配置的基本的步骤。 国内的软件源有很多&#xff0c;这里选择清华源作为…...

JL-03-Y1 清易易站

产品概述 清易易站是清易电子新研发的一体式气象站&#xff0c;坚持科学化和人文化相结合的设计理念&#xff0c;应用新检测原理研发的传感器观测各类气象参数&#xff0c;采用社会上时尚的工艺理念设计气象站的整体结构&#xff0c;实现了快速观测、无线传输、数据准确、精度较…...

PipeSer管线管网云服务

行业需求 地下管网&#xff0c;作为现代城市不可或缺的基础设施&#xff0c;堪称城市的“地下生命线”。它承载着城市的供水、排水、燃气、电力、通信等重要功能&#xff0c;是确保城市正常运转和居民生活便利的关键所在。将地下管网的复杂布局和运行状态以三维形式直观展现出来…...

kubesphere报错

1.安装过程报错unable to sign certificate: must specify a CommonName [rootnode1 ~]# ./kk init registry -f config-sample.yaml -a kubesphere.tar.gz _ __ _ _ __ | | / / | | | | / / | |/ / _ _| |__ ___| |/…...

【QT5】<总览二> QT信号槽、对象树及样式表

文章目录 前言 一、QT信号与槽 1. 信号槽连接模型 2. 信号槽介绍 3. 自定义信号槽 二、不使用UI文件编程 三、QT的对象树 四、添加资源文件 五、样式表的使用 六、QSS文件的使用 前言 承接【QT5】&#xff1c;总览一&#xff1e; QT环境搭建、快捷键及编程规范。若存…...

2024.05.24 校招 实习 内推 面经

绿*泡*泡VX&#xff1a; neituijunsir 交流*裙 &#xff0c;内推/实习/校招汇总表格 1、实习丨蔚来2025届实习生招募计划开启&#xff08;内推&#xff09; 实习丨蔚来2025届实习生招募计划开启&#xff08;内推&#xff09; 2、校招&实习丨联芯集成电路2025届暑期实习…...

如何理解 Java 8 引入的 Lambda 表达式及其使用场景

Lambda表达式是Java 8引入的一项重要特性&#xff0c;它使得编写简洁、可读和高效的代码成为可能。Lambda表达式本质上是一种匿名函数&#xff0c;能够更简洁地表示可传递的代码块&#xff0c;用于简化函数式编程的实现。 一、Lambda表达式概述 1. 什么是Lambda表达式 Lambd…...

GPT-4与GPT-4O的区别详解:面向小白用户

1. 模型介绍 在人工智能的语言模型领域&#xff0c;OpenAI的GPT-4和GPT-4O是最新的成员。这两个模型虽然来源于相同的基础技术&#xff0c;但在功能和应用上有着明显的区别。 GPT-4&#xff1a;这是一个通用型语言模型&#xff0c;可以理解和生成自然语言。无论是写作、对话还…...

使用throttle防止按钮多次点击

背景&#xff1a;如上图所示&#xff0c;点击按钮&#xff0c;防止按钮点击多次 <div class"footer"><el-button type"primary" click"submitThrottle">发起咨询 </el-button> </div>import { throttle } from loda…...

Echarts 在折线图的指定位置绘制一个图标展示

文章目录 需求分析需求 在线段交汇处用一个六边形图标展示 分析 可以使用 markPoint 和 symbol 属性来实现。这是一个更简单和更标准的方法来添加标记点在运行下述代码后,你将在浏览器中看到一个折线图,其中在 [3, 35] (即图表中第四个数据点 Thu 的 y 值为 35 的位置)处…...

适用于 Windows 的 8 大数据恢复软件

数据恢复软件可帮助您恢复因意外删除或由于某些技术故障&#xff08;如硬盘损坏等&#xff09;而丢失的数据。这些工具可帮助您从硬盘驱动器 (HDD) 中高效地恢复丢失的数据&#xff0c;因为这些工具不支持从 SSD 恢复数据。重要的是要了解&#xff0c;您删除的数据不会被系统永…...

HTTP基础

一、HTTP协议 1、HTTP协议概念 HTTP的全称是&#xff1a;Hyper Text Transfer Protocol&#xff0c;意为 超文本传输协议。它指的是服务器和客户端之间交互必须遵循的一问一答的规则。形容这个规则&#xff1a;问答机制、握手机制。 它规范了请求和响应内容的类型和格式, 是基于…...

深入了解Linux命令:visudo

深入了解Linux命令&#xff1a;visudo 在Linux系统中&#xff0c;sudo&#xff08;superuser do&#xff09;是一个允许用户以其他用户身份&#xff08;通常是超级用户或其他用户&#xff09;执行命令的程序。sudo的配置文件/etc/sudoers存储了哪些用户可以执行哪些命令的权限…...

十大排序 —— 希尔排序

十大排序 —— 希尔排序 什么是希尔排序插入排序希尔排序递归版本 我们今天来看另一个很有名的排序——希尔排序 什么是希尔排序 希尔排序&#xff08;Shell Sort&#xff09;是插入排序的一种更高效的改进版本&#xff0c;由Donald Shell于1959年提出。它通过比较相距一定间…...

SpringCloud Hystrix服务熔断实例总结

SpringCloud Hystrix断路器-服务熔断与降级和HystrixDashboard SpringCloud Hystrix服务降级实例总结 本文采用版本为Hoxton.SR1系列&#xff0c;SpringBoot为2.2.2.RELEASE <dependency><groupId>org.springframework.cloud</groupId><artifactId>s…...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中&#xff0c;接口是一种抽象类型&#xff0c;它定义了一组方法的集合&#xff1a; // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的&#xff1a; // 矩形结构体…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

SpringTask-03.入门案例

一.入门案例 启动类&#xff1a; package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

IP如何挑?2025年海外专线IP如何购买?

你花了时间和预算买了IP&#xff0c;结果IP质量不佳&#xff0c;项目效率低下不说&#xff0c;还可能带来莫名的网络问题&#xff0c;是不是太闹心了&#xff1f;尤其是在面对海外专线IP时&#xff0c;到底怎么才能买到适合自己的呢&#xff1f;所以&#xff0c;挑IP绝对是个技…...

Ubuntu系统复制(U盘-电脑硬盘)

所需环境 电脑自带硬盘&#xff1a;1块 (1T) U盘1&#xff1a;Ubuntu系统引导盘&#xff08;用于“U盘2”复制到“电脑自带硬盘”&#xff09; U盘2&#xff1a;Ubuntu系统盘&#xff08;1T&#xff0c;用于被复制&#xff09; &#xff01;&#xff01;&#xff01;建议“电脑…...

java高级——高阶函数、如何定义一个函数式接口类似stream流的filter

java高级——高阶函数、stream流 前情提要文章介绍一、函数伊始1.1 合格的函数1.2 有形的函数2. 函数对象2.1 函数对象——行为参数化2.2 函数对象——延迟执行 二、 函数编程语法1. 函数对象表现形式1.1 Lambda表达式1.2 方法引用&#xff08;Math::max&#xff09; 2 函数接口…...

密码学基础——SM4算法

博客主页&#xff1a;christine-rr-CSDN博客 ​​​​专栏主页&#xff1a;密码学 &#x1f4cc; 【今日更新】&#x1f4cc; 对称密码算法——SM4 目录 一、国密SM系列算法概述 二、SM4算法 2.1算法背景 2.2算法特点 2.3 基本部件 2.3.1 S盒 2.3.2 非线性变换 ​编辑…...