yolov5的口罩识别系统+GUI界面 (附代码)

基于YOLOv5模型的口罩识别系统,结合了GUI界面,旨在帮助用户快速、准确地识别图像或视频中佩戴口罩的情况。YOLOv5是一种流行的目标检测模型,具有高效的实时检测能力,而GUI界面则提供了友好的用户交互界面,使得整个系统更易于操作和使用。
通过该系统,用户可以上传图像或者选择视频进行口罩识别,系统会使用YOLOv5模型自动检测图中人脸并判断是否佩戴口罩。识别结果将会在界面上直观显示,同时还可以导出识别结果或者保存分析报告。这样的系统可以被广泛应用于监控系统、安全检查等领域,提高工作效率和准确性。

使用方式
- 安装依赖
pip install -r requirements.txt
- 运行 PyqtGUI.py 文件
python PyqtGUI.py
备注:best1、2、3.pt为模型文件,如有需要自行替换。
目标检测:
目标检测是计算机视觉和数字图像处理的一个热门方向,广泛应用于无人驾驶、智能视频监控、工业检测、航空航天等诸多领域,通过计算机视觉减少对人力资本的消耗,具有重要的现实意义。 因此,目标检测也就成为了近年来理论和应用的研究热点,它是图像处理和计算机视觉学科的重要分支,也是智能监控系统的核心部分,同时目标检测也是泛身份识别领域的一个基础性的算法,对后续的人脸识别、步态识别、人群计数、实例分割等任务起着至关重要的作用。
YOLOv5简介:
YOLOV4出现之后不久,YOLOv5横空出世。YOLOv5在YOLOv4算法的基础上做了进一步的改进,检测性能得到进一步的提升。YOLOv5在COCO数据集上面的测试效果非常不错。工业界也往往更喜欢使用这些方法,而不是利用一个超级复杂的算法来获得较高的检测精度。 YOLOv5是一种单阶段目标检测算法,速度与精度都得到了极大的性能提升。主要的改进思路如下所示:
- 输入端:在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放。
- 基准网络:融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构。
- Neck网络:目标检测网络在BackBone与最后的Head输出层之间往往会插入一些层,Yolov5中添加了FPN+PAN结构。
- Head输出层:输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。
YOLOv5S模型的网络架构:

YOLOV5目录结构:

其中,train.py这个文件也是我们接下来训练yolo模型需要用到的启动文件。 requirement.txt 中有我们所需要的的全部依赖,采用pip安装。
pip install -r requirements.txt #安装完依赖后准备工作完成
每个文件作用:
YOLOv5
| detect.py #检测脚本
| hubconf.py # PyTorch Hub相关代码
| LICENSE # 版权文件
| README.md #README markdown 文件
| requirements.txt #项目所需的安装包列表
| sotabench.py #COCO 数据集测试脚本
| test.py #模型测试脚本
| train.py #模型训练脚本
| tutorial.ipynb #Jupyter Notebook演示代码
|-- data
| | coco.yaml #COCO 数据集配置文件
| | coco128.yaml #COCO128 数据集配置文件
| | hyp.finetune.yaml #超参数微调配置文件
| | hyp.scratch.yaml #超参数启始配置文件
| | voc.yaml #VOC数据集配置文件
| |---scripts
| get_coco.sh # 下载COCO数据集shell命令
| get_voc.sh # 下载VOC数据集shell命令
|-- inference
| | images #示例图片文件夹
| bus.jpg
| zidane.jpg
|-- models
| | common.py #模型组件定义代码
| | experimental.py #实验性质的代码
| | export.py #模型导出脚本
| | yolo.py # Detect 及 Model构建代码
| | yolo5l.yaml # yolov5l 网络模型配置文件
| | yolo5m.yaml # yolov5m 网络模型配置文件
| | yolo5s.yaml # yolov5s 网络模型配置文件
| | yolo5x.yaml # yolov5x 网络模型配置文件
| | __init__.py
| |---hub
| yolov3-spp.yaml
| yolov3-fpn.yaml
| yolov3-panet.yaml
|-- runs #训练结果
| |--exp0
| | | events.out.tfevents.
| | | hyp.yaml
| | | labels.png
| | | opt.yaml
| | | precision-recall_curve.png
| | | results.png
| | | results.txt
| | | test_batch0_gt.jpg
| | | test_batch0_pred.jpg
| | | test_batch0.jpg
| | | test_batch1.jpg
| | | test_batch2.jpg
| | |--weights
| | best.pt #所有训练轮次中最好权重
| | last.pt #最近一轮次训练权重
|-- utils
| | activations.py #激活函数定义代码
| | datasets.py #Dataset 及Dataloader定义代码
| | evolve.py #超参数进化命令
| | general.py #项目通用函数代码
| | google_utils.py # 谷歌云使用相关代码
| | torch_utils.py # torch工具辅助类代码
| | __init__.py # torch工具辅助类代码
| |---google_app_engine
| additional_requirements.txt
| app.yaml
| Dockerfile
|-- VOC #数据集目录
| |--images #数据集图片目录
| | |--train # 训练集图片文件夹
| | | 000005.jpg
| | | 000007.jpg
| | | 000009.jpg
| | | 0000012.jpg
| | | 0000016.jpg
| | | ...
| | |--val # 验证集图片文件夹
| | | 000001.jpg
| | | 000002.jpg
| | | 000003.jpg
| | | 000004.jpg
| | | 000006.jpg
| | | ...
| |--labels #数据集标签目录
| | train.cache
| | val.cache
| | |--train # 训练标签文件夹
| | | 000005.txt
| | | 000007.txt
| | | ...
| | |--val # 验证集图片文件夹
| | | 000001.txt
| | | 000002.txt
| | | ...
|-- weightsdwonload_weights.sh #下载权重文件命令yolov5l.pt #yolov5l 权重文件yolov5m.pt #yolov5m 权重文件yolov5s.mlmodel #yolov5s 权重文件(Core M格式)yolov5s.onnx #yolov5s 权重文件(onnx格式)yolov5s.torchscript #yolov5s 权重文件(torchscript格式)yolov5x.pt #yolov5x 权重文件
模型训练过程:
使用环境:Python3.8+torch1.8.1+cuda11.1+pycharm (注:cuda的安装版本取决于显卡类型)
1.数据集的标注:
python打开labelimg这个软件进行标注。
python labelimg.py
数据格式建议选择VOC,后期再转换成 yolo格式。 ( VOC会生成 xml 文件,可以灵活转变为其他模型所需格式)
本次训练标注两个标签,佩戴口罩为 mask,未佩戴口罩为 face。
在根目录下建立一个VOCData文件夹,再建立两个子文件,其中,jpg文件放置在VOCData/images下,xml放置在VOCData/Annotations中。(这一步根据个人随意,因为在训练时需要创建配置文件指定模型训练集的目录)
2.数据集的训练:
①、在项目根目录下文件夹下新建mask_data.yaml配置文件,添加如下内容: (根据个人情况修改)

其中: path:项目的根目录 train:训练集与path的相对路径 val:验证集与path的相对路径 nc:类别数量,2个 names:类别名字 (上一步中标注好的训练集,可以按照想要比例划分为训练和验证集,也可以不划分填同一路径。)
②、修改启动文件 train.py:
打开train.py,其相关参数如下:

其中: weights:权重文件路径 cfg:存储模型结构的配置文件 data:存储训练、测试数据的文件(上一步中自己创建的那个.yaml) epochs:训练过程中整个数据集的迭代次数 batch-size:训练后权重更新的图片数 img-size:输入图片宽高。 device:选择使用GPU还是CPU workers:线程数,默认是8
#输入命令开始训练:
python train.py --weights data/yolov5s.pt --cfg models/yolov5s.yaml --data data/mask_data.yaml --epoch 100 --batch-size 8 --device 0
③、等待慢慢跑完

模型结果数据呈现:
1.数据集的分布:

mask的照片约有2000张,face的照片约有2500张。
2.损失函数和准确率:

可以看到随着训练的进行,以不同方式呈现的损失函数呈明显下降趋势,准确率呈上升趋势。
3.置信度与准确率:

置信度在0.6以上时,准确率接近80%。
GUI编程:
编写GUI界面,方便对权重文件进行一个替换,对图片和视频进行一个监测,以及调用摄像头进行实时监测。




相关文章:
yolov5的口罩识别系统+GUI界面 (附代码)
基于YOLOv5模型的口罩识别系统,结合了GUI界面,旨在帮助用户快速、准确地识别图像或视频中佩戴口罩的情况。YOLOv5是一种流行的目标检测模型,具有高效的实时检测能力,而GUI界面则提供了友好的用户交互界面,使得整个系统…...
WPF中Window的外观实现及常用属性
文章目录 1. 概要2. Window的外观2.1 Window的外观组成2.2 Window的实现2.3 Window外观配置2.4 Window 的其他常用属性1. AllowsTransparency 2. WindowStartupLocation3. ShowInTaskbar4. ShowActivated5. SizeToContent6. Topmost7. WindowStyle 1. 概要 和 Android 类似, W…...
(有代码示例)Vue 或 JavaScript中使用全局通信的3种方式
在 Vue 或 JavaScript 应用中,可以使用以下库来实现全局事件通信: Vue.js 中的 EventBus: 在 Vue.js 中,可以使用 EventBus 来实现全局事件通信。EventBus 是一个 Vue 实例,用于在组件之间传递事件。你可以使用 $on、…...
MAB规范(1):概览介绍
前言 MATLAB的MAAB(MathWorks Automotive Advisory Board)建模规范是一套由MathWorks主导的建模指南,旨在提高基于Simulink和Stateflow进行建模的代码质量、可读性、可维护性和可重用性。这些规范最初是由汽车行业的主要厂商共同制定的&…...
基于振弦采集仪的土木工程安全监测技术研究
基于振弦采集仪的土木工程安全监测技术研究 随着土木工程的发展,安全监测成为了非常重要的一部分。土木工程的安全监测旨在及早发现结构的变形、位移、振动等异常情况,以便及时采取措施进行修复或加固,从而保障工程的安全运行。振弦采集仪作…...
这个高考作文满分的极客,想和你聊聊新媒体写作
计育韬 曾为上海市高考作文满分考生 微信官方 SVG AttributeName 开发者 新榜 500 强运营人 复旦大学青年智库讲师 浙江传媒学院客座导师 上海团市委新媒体顾问 上海市金山区青联副主席 文案能力,从来就不是一蹴而就的。今天,来和大家聊聊当年我的…...
AI推介-多模态视觉语言模型VLMs论文速览(arXiv方向):2024.05.25-2024.05.31
文章目录~ 1.Empowering Visual Creativity: A Vision-Language Assistant to Image Editing Recommendations2.Bootstrap3D: Improving 3D Content Creation with Synthetic Data3.Video-MME: The First-Ever Comprehensive Evaluation Benchmark of Multi-modal L…...
如何通过Python SMTP配置示例发附件邮件?
Python SMTP配置的步骤?SMTP服务器的优缺点有哪些? 当我们需要发送包含附件的邮件时,自动化的解决方案显得尤为重要。Python提供了SMTP库,使我们能够轻松配置并发送带有附件的邮件。AokSend将通过一个示例来展示如何操作…...
amd64
MD64,或"x64",是一种64位元的电脑处理器架构。它是基于现有32位元的x86架构,由AMD公司所开发,应用AMD64指令集的自家产品有Athlon(速龙) 64、Athlon 64 FX、Athlon 64 X2、Turion(炫龙) 64、Opteron(皓龙)、Sempron(闪龙…...
2024如何优化SEO?
在2024年的今天,要问我会如何优化seo,我会专注于几个关键的方面。首先,随着AI内容生成技术的发展,我会利用这些工具来帮助创建或优化我的网站内容,但是,随着谷歌3月份的算法更新,纯粹的ai内容可…...
【NoSQL数据库】Redis命令、持久化、主从复制
Redis命令、持久化、主从复制 redis配置 Redis命令、持久化、主从复制Redis数据类型redis数据库常用命令redis多数据库常用命令1、多数据库间切换2、多数据库间移动数据3、清除数据库内数据 key命令1、keys 命令2、判断键值是否存在exists3、删除当前数据库的指定key del4、获取…...
使用Django JWT实现身份验证
文章目录 安装依赖配置Django设置创建API生成和验证Token总结与展望 在现代Web应用程序中,安全性和身份验证是至关重要的。JSON Web Token(JWT)是一种流行的身份验证方法,它允许在客户端和服务器之间安全地传输信息。Django是一个…...
MT2084 检测敌人
思路: 1. 以装置为中心->以敌人为中心。 以敌人为中心,r为半径做圆,与x轴交于a,b点,则在[a,b]之间的装置都能覆盖此敌人。 每个敌人都有[a,b]区间,则此题转化为:有多少个装置能覆盖到这些[a,b]区间。…...
支持向量机、随机森林、K最近邻和逻辑回归-九五小庞
支持向量机(Support Vector Machine, SVM)、随机森林(Random Forest)、K最近邻(K-Nearest Neighbors, KNN)和逻辑回归(Logistic Regression)是机器学习和统计学习中常用的分类算法。…...
MySQL—多表查询—多表关系介绍
一、引言 提到查询,我们想到之前学习的单表查询(DQL语句)。而这一章节部分的博客我们将要去学习和了解多表查询。 对于多表查询,主要从以下7个方面进行学习。 (1)第一部分:介绍 1、多表关系 2、…...
Vue基础篇--table的封装
1、 在components文件夹中新建一个ITable的vue文件 <template><div class"tl-rl"><template :table"table"><el-tablev-loading"table.loading":show-summary"table.hasShowSummary":summary-method"table…...
mysql中optimizer trace的作用
大家好。对于MySQL 5.6以及之前的版本来说,查询优化器就像是一个黑盒子一样,我们只能通过EXPLAIN语句查看到最后 优化器决定使用的执行计划,却无法知道它为什么做这个决策。于是在MySQL5.6以及之后的版本中,MySQL新增了一个optimi…...
实习面试题(答案自敲)、
1、为什么要重写equals方法,为什么重写了equals方法后,就必须重写hashcode方法,为什么要有hashcode方法,你能介绍一下hashcode方法吗? equals方法默认是比较内存地址;为了实现内容比较,我们需要…...
二叉树讲解
目录 前言 二叉树的遍历 层序遍历 队列的代码 queuepush和queuepushbujia的区别 判断二叉树是否是完全二叉树 前序 中序 后序 功能展示 创建二叉树 初始化 销毁 简易功能介绍 二叉树节点个数 二叉树叶子节点个数 二叉树第k层节点个数 二叉树查找值为x的节点 判…...
Unity DOTS技术(五)Archetype,Chunk,NativeArray
文章目录 一.Chunk和Archetype什么是Chunk?什么是ArchType 二.Archetype创建1.创建实体2.创建并添加组件3.批量创建 三.多线程数组NativeArray 本次介绍的内容如下: 一.Chunk和Archetype 什么是Chunk? Chunk是一个空间,ECS系统会将相同类型的实体放在Chunk中.当一个Chunk…...
Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...
2.Vue编写一个app
1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...
ServerTrust 并非唯一
NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...
【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...
ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...
