当前位置: 首页 > news >正文

LangChain学习之prompt格式化与解析器使用

1. 学习背景

在LangChain for LLM应用程序开发中课程中,学习了LangChain框架扩展应用程序开发中语言模型的用例和功能的基本技能,遂做整理为后面的应用做准备。视频地址:基于LangChain的大语言模型应用开发+构建和评估高

2. 先准备尝试调用OpenAI API

本实验基于jupyternotebook进行。

2.1先安装openai包、langchain包

!pip install openai
!pip install langchain

2.2 尝试调用openai包

import openai# 此处需要提前准备好可使用的openai KEY
openai.api_key = "XXXX"
openai.base_url = "XXXX"def get_completion(prompt, model = "gpt-3.5-turbo"):messages = [{"role": "user", "content": prompt}]response = openai.chat.completions.create(model = model,messages = messages,temperature = 0,)return response.choices[0].message.content
get_completion("What is 1+1?")

输出结果:

'1 + 1 equals 2.'

3.尝试用API解决邮件对话问题

3.1 邮件内容和风格

customer_email = """
Arrr, I be fuming that me blender lid \
flew off and splattered me kitchen walls \
with smoothie! And to make matters worse,\
the warranty don't cover the cost of \
cleaning up me kitchen. I need yer help \
right now, matey!
"""style = """American English \
in a calm and respectful tone
"""

3.2 构造成prompt

prompt = f"""Translate the text \
that is delimited by triple backticks \
into a style that is {style}. 
text: ```{customer_email}```
"""
prompt

输出如下:

"Translate the text that is delimited by triple backticks into a style that is American English in a calm and respectful tone\n. \ntext: ```\nArrr, I be fuming that me blender lid flew off and splattered me kitchen walls with smoothie! And to make matters worse,the warranty don't cover the cost of cleaning up me kitchen. I need yer help right now, matey!\n```\n"

3.3 使用上述prompt得到答案

response = get_completion(prompt)
response

输出如下:

'I must express my frustration that my blender lid unexpectedly came off and caused my kitchen walls to be covered in smoothie splatters! And unfortunately, the warranty does not cover the cleaning costs of my kitchen. I kindly request your immediate assistance, my friend.'

4. 尝试用langchain解决

4.1 用langchain调用API

from langchain.chat_models import ChatOpenAI
chat = ChatOpenAI(api_key = "XXXX",base_url = "XXXX",temperature=0.0)
print(chat)

输出如下:

ChatOpenAI(client=<openai.resources.chat.completions.Completions object at 0x7f362ab4f340>, 
async_client=<openai.resources.chat.completions.AsyncCompletions object at 0x7f362aba9d80>, 
temperature=0.0, openai_api_key='sk-gGSeHiJn09Ydl6Q1655eCf128b3a42XXXXXXXXXXXXXX', 
openai_api_base='XXXX', openai_proxy='')

4.2 构造prompt模板

注意和3.2的区别,一个用了f"“”“”“,一个直接”“”“”"。

template_string = """Translate the text \
that is delimited by triple backticks \
into a style that is {style}. \
text: ```{text}```
"""customer_style = """American English in a calm and respectful tone"""customer_email = """
Arrr, I be fuming that me blender lid \
flew off and splattered me kitchen walls \
with smoothie! And to make matters worse, \
the warranty don't cover the cost of \
cleaning up me kitchen. I need yer help \
right now, matey!
"""

4.3 调用ChatPromptTemplate

from langchain.prompts import ChatPromptTemplate
# 将构造的prompt模板化
prompt_template = ChatPromptTemplate.from_template(template_string)
# 模板中的占位符填充的参数
customer_messages = prompt_template.format_messages(style = customer_style,text = customer_email
)
print(type(customer_messages))
print(customer_messages[0])

输出如下:

<class 'list'>
content="Translate the text that is delimited by triple backticks into a style that is American English in a calm and respectful tone\n. text: ```\nArrr, I be fuming that me blender lid flew off and splattered me kitchen walls with smoothie! And to make matters worse, the warranty don't cover the cost of cleaning up me kitchen. I need yer help right now, matey!\n```\n"

4.4 使用LLM解决问题

# Call the LLM to translate to the style of the customer message
customer_response = chat(customer_messages)
print(customer_response.content)

输出如下:

Oh man, I 'm really frustrated that my blender lid flew off and made a mess of my kitchen walls with smoothie! And on top of that, the warranty doesn't cover the cost of cleaning up my kitchen. I could really use your help right now, buddy!

5. 调用langchain对邮件回复

5.1定义回复的prompt

service_reply = """Hey there customer, \
the warranty does not cover \
cleaning expenses for your kitchen \
because it's your fault that \
you misused your blender \
by forgetting to put the lid on before \
starting the blender. \
Tough luck! See ya!
"""service_style_pirate = """\
a polite tone \
that speaks in English Pirate\
"""# 继续使用前面定义的prompt_template,占位符用参数填充
service_messages = prompt_template.format_messages(style = service_style_pirate,text = service_reply)print(service_messages[0].content)

输出如下:

Translate the text that is delimited by triple backticks into a style that is a polite tone that speaks in English Pirate. 
text: ```
Hey there customer, the warranty does not cover cleaning expenses for your kitchen because it's your fault that you misused your blender by forgetting to put the lid on before starting the blender. Tough luck! See ya!```

5.2 使用LLM解决问题

service_response = chat(service_messages)
print(service_response.content)

输出如下:

Ahoy there, me heartie! Unfortunately, the warranty be not coverin' the cost of cleanin' yer kitchen, as tis yer own fault for misusin' yer blender by forgettin' to put on the lid afore startin' the blendin'. Aye, 'tis a tough break indeed! Fare thee well, matey!

至此我们就完成了使用langchain去实现prompt的构造、转换和调用。

6. 用langchain转化回答为JSON格式

6.1 构造模板

# 顾客对产品的评论
customer_review = """\
This leaf blower is pretty amazing.  It has four settings:\
candle blower, gentle breeze, windy city, and tornado. \
It arrived in two days, just in time for my wife's \
anniversary present. \
I think my wife liked it so much she was speechless. \
So far I've been the only one using it, and I've been \
using it every other morning to clear the leaves on our lawn. \
It's slightly more expensive than the other leaf blowers \
out there, but I think it's worth it for the extra features.
"""# 顾客意见形成模板
review_template = """\
For the following text, extract the following information:gift: Was the item purchased as a gift for someone else? \
Answer True if yes, False if not or unknown.delivery_days: How many days did it take for the product \
to arrive? If this information is not found, output -1.price_value: Extract any sentences about the value or price,\
and output them as a comma separated Python list.Format the output as JSON with the following keys:
gift
delivery_days
price_valuetext: {text}
"""from langchain.prompts import ChatPromptTemplate
# 构造模板,占位符信息用prompt填充
prompt_template = ChatPromptTemplate.from_template(review_template)
messages = prompt_template.format_messages(text=customer_review)
# 调用LLM,输入为prompt
response = chat(messages)
print(response.content)

输出如下:

{"gift": true,"delivery_days": 2,"price_value": "It's slightly more expensive than the other leaf blowers out there, but I think it's worth it for the extra features."
}

6.2 构造合适的prompt

print(type(response.content))

输出如下:

str

可以看到输出内容是字符串类型的,为了方便处理数据,我们需要的是JSON格式,因此还需要进行转化。

from langchain.output_parsers import ResponseSchema
from langchain.output_parsers import StructuredOutputParsergift_schema = ResponseSchema(name="gift",  description="Was the item purchased as a gift for someone else? Answer True if yes, False if not or unknown.")
delivery_days_schema = ResponseSchema(name="delivery_days", description="How many days did it take for the product to arrive? If this information \is not found, output -1.")
price_value_schema = ResponseSchema(name="price_value", description="Extract any sentences about the value or price, and output them as a comma \separated Python list.")response_schemas = [gift_schema, delivery_days_schema,price_value_schema]
# 构造转换器
output_parser = StructuredOutputParser.from_response_schemas(response_schemas)
format_instructions = output_parser.get_format_instructions()
print(format_instructions)

输出如下:

The output should be a markdown code snippet formatted in the following schema, including the leading and trailing "```json" and "```":```json
{"gift": string  // Was the item purchased as a gift for someone else? Answer True if yes, False if not or unknown."delivery_days": string  // How many days did it take for the product to arrive? If this information                                       is not found, output -1."price_value": string  // Extract any sentences about the value or price, and output them as a comma                                     separated Python list.
}```

LLM会根据构造的prompt进行回答,生成最终的回答结果。接着构造完整的prompt:

review_template_2 = """\
For the following text, extract the following information:gift: Was the item purchased as a gift for someone else? \
Answer True if yes, False if not or unknown.delivery_days: How many days did it take for the product\
to arrive? If this information is not found, output -1.price_value: Extract any sentences about the value or price,\
and output them as a comma separated Python list.text: {text}{format_instructions}
"""prompt = ChatPromptTemplate.from_template(template=review_template_2)
messages = prompt.format_messages(text=customer_review, format_instructions=format_instructions)
print(messages[0].content)

输出如下:

For the following text, extract the following information:gift: Was the item purchased as a gift for someone else? Answer True if yes, False if not or unknown.delivery_days: How many days did it take for the productto arrive? If this information is not found, output -1.price_value: Extract any sentences about the value or price,and output them as a comma separated Python list.text: This leaf blower is pretty amazing.  It has four settings:candle blower, gentle breeze, windy city, and tornado. It arrived in two days, just in time for my wife's anniversary present. I think my wife liked it so much she was speechless. So far I've been the only one using it, and I've been using it every other morning to clear the leaves on our lawn. It's slightly more expensive than the other leaf blowers out there, but I think it's worth it for the extra features.The output should be a markdown code snippet formatted in the following schema, including the leading and trailing "```json" and "```":```json
{"gift": string  // Was the item purchased as a gift for someone else? Answer True if yes, False if not or unknown."delivery_days": string  // How many days did it take for the product to arrive? If this information                                       is not found, output -1."price_value": string  // Extract any sentences about the value or price, and output them as a comma                                     separated Python list.
}```

6.3 使用LLM解决问题

response = chat(messages)
print(response.content)

输出如下:

```json
{"gift": "True","delivery_days": "2","price_value": "It's slightly more expensive than the other leaf blowers out there, but I think it's worth it for the extra features."
}```

进行格式转换

output_dict = output_parser.parse(response.content)
print(output_dict)

输出如下:

{'gift': 'True', 'delivery_days': '2', 'price_value': "It's slightly more expensive than the other leaf blowers out there, but I think it's worth it for the extra features."}

接下来查看输出类型:

type(output_dict)

输出如下:

dict

接下来就可以愉快的使用输出数据了。

总的来说,langchain对于格式化输出和prompt构造拥有较好的效果,可以很好使用。

相关文章:

LangChain学习之prompt格式化与解析器使用

1. 学习背景 在LangChain for LLM应用程序开发中课程中&#xff0c;学习了LangChain框架扩展应用程序开发中语言模型的用例和功能的基本技能&#xff0c;遂做整理为后面的应用做准备。视频地址&#xff1a;基于LangChain的大语言模型应用开发构建和评估高 2. 先准备尝试调用O…...

基于EasyX的贪吃蛇小游戏 - C语言

游戏基本功能演示&#xff1a; 1.主菜单界面 2.自定难度界面 在这里可以自行设定游戏的难度&#xff0c;包括蛇的移动速度&#xff0c;初始节数&#xff0c;以及默认模式&#xff0c;参考线&#xff08;网格&#xff09;。这些设定的数据都会在右上角的游戏属性栏中实时显示。…...

使用Docker辅助图像识别程序开发:在Docker中显示GUI、访问GPU、USB相机以及网络

目录概览 引言安装和配置安装docker安装nvidia-docker在docker中显示GUI在Docker中访问usb相机在Docker镜像中开放端口开启更多的GPU功能支持创建本地镜像中心一些可选参数上传镜像回收空间清理所有的无用镜像清理指定的镜像GPU Docker with Anaconda第一种方式:构建DockerFile…...

Java中常见错误-泛型擦除及桥接方法问题及解决方案

Java中泛型擦除及桥接方法 泛型擦除无界擦除上界擦除下界擦除 桥接方法演示案例wrong1wrong2wrong3right 原理总结 泛型擦除 ​ 泛型擦除是Java泛型机制的一个特性&#xff0c;它意味着**在编译期间&#xff0c;所有的泛型信息都会被移除&#xff0c;而在运行时&#xff0c;所…...

Linux 程序守护脚本

引言 程序是由代码形成的&#xff0c;代码是由人写的。只要是人&#xff0c;都会有疏忽的时候&#xff0c;导致写出的程序有bug&#xff0c;当然最严重的bug就是程序闪退。 本文旨在提供一个程序守护脚本&#xff0c;当监测到程序闪退后&#xff0c;立马将程序再起启动&#…...

跨境电商|Facebook Marketplace怎么做?

2016 年&#xff0c;Facebook打造了同名平台 Facebook Marketplace。通过利用 Facebook 现有的庞大客户群&#xff0c;该平台取得了立竿见影的成功&#xff0c;每月访问量将超过 10 亿。对于个人卖家和小企业来说&#xff0c;Facebook Marketplace是一个不错的销货渠道&#xf…...

.gitignore 文件

一.什么是 .gitignore 文件 在任何当前工作的 Git 仓库中&#xff0c;每个文件都是这样的&#xff1a; 追踪的&#xff08;tracked&#xff09;- 这些是 Git 所知道的所有文件或目录。这些是新添加&#xff08;用 git add 添加&#xff09;和提交&#xff08;用 git commit 提…...

qt中实现多语言功能

qt中实现多语言功能 原理&#xff1a; 其本质就是生成ts文件&#xff0c;然后使用Linguist软件手工翻译&#xff0c;再生成qm文件&#xff0c;最后在主程序的开始加载不同的qm文件&#xff0c;实现多语言。 步骤&#xff1a; 修改程序文件 在pro文件中加入说明 TRANSLATI…...

数据结构与算法之 leetcode 513. 找树左下角的值 (BFS) 广度优先

513. 找树左下角的值 /*** Definition for a binary tree node.* function TreeNode(val, left, right) {* this.val (valundefined ? 0 : val)* this.left (leftundefined ? null : left)* this.right (rightundefined ? null : right)* }*/ /*** param {T…...

mysql中的函数

MySQL提供了丰富的内置函数&#xff0c;涵盖了字符串操作、数字计算、日期和时间处理、条件判断、聚合计算等多个方面。这些函数可以帮助开发者在查询和数据处理时更高效地完成任务。下面是对MySQL中常见的函数分类及其主要函数的介绍&#xff1a; 字符串函数 CONCAT()&#x…...

Shell正则表达式与文本处理器

一、grep 1. 正则表达式 是一种匹配字符串的方法&#xff0c;通过一些特殊符号&#xff0c;快速实现查找&#xff0c;删除&#xff0c;替换某特定字符串。 选项&#xff1a; -a 不要忽略二进制数据。 -A 显示该行之后的内容。 -b 显示该行之前的内容。 -c 计算符合范本样…...

双指针法 ( 三数之和 )

题目 &#xff1a;给你一个整数数组 nums &#xff0c;判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k &#xff0c;同时还满足 nums[i] nums[j] nums[k] 0 。请 你返回所有和为 0 且不重复的三元组。 注意&#xff1a;答案中不可以包含重复…...

感染恶意代码之后怎么办?

隔离设备 立即将感染设备与网络隔离&#xff0c;断开与互联网和其他设备的连接。这可以防止恶意代码进一步传播到其他设备&#xff0c;并减少对网络安全的威胁。 确认感染 确认设备是否真的感染了恶意代码。这可能需要使用安全软件进行全面扫描&#xff0c;以检测和识别任何已…...

【计算机网络】P3 计算机网络协议、接口、服务的概念、区别以及计算机网络提供的三种服务方式

目录 协议什么是协议协议是水平存活的协议的组成 接口服务服务是什么服务原语 协议与服务的区别计算机网络提供的服务的三种方式面向连接服务与无连接服务可靠服务与不可靠服务有应答服务与无应答服务 协议 什么是协议 协议&#xff0c;就是规则的集合。 在计算机网络中&…...

多角度剖析事务和事件的区别

事务和事件这两个概念在不同的领域有着不同的含义&#xff0c;尤其是在计算机科学、数据库管理和软件工程中。下面从多个角度来剖析事务和事件的区别&#xff1a; 计算机科学与数据库管理中的事务 事务(Transaction)&#xff1a; 定义&#xff1a;在数据库管理中&#xff0c…...

模糊小波神经网络(MATLAB 2018)

模糊系统是一种基于知识或规则的控制系统&#xff0c;从属于智能控制&#xff0c;通过简化系统的复杂性&#xff0c;利用控制法来描述系统变量之间的关系&#xff0c;采用语言式的模糊变量来描述系统&#xff0c;不必对被控对象建立完整的数学模型。相比较传统控制策略&#xf…...

HTML布局

标准流&#xff1a; 标准流就是元素在页面中的默认排列方式&#xff0c;也就是元素在页面中的默认位置。 1.1 块元素----独占一行----从上到下排列 1.2 行内元素----不独占一行----从左到右排列&#xff0c;遇到边界换行 1.3 行内块元素----不独占一行…...

数据结构:双链表

数据结构&#xff1a;双链表 题目描述参考代码 题目描述 输入样例 10 R 7 D 1 L 3 IL 2 10 D 3 IL 2 7 L 8 R 9 IL 4 7 IR 2 2输出样例 8 7 7 3 2 9参考代码 #include <iostream>using namespace std;const int N 100010;int m; int idx, e[N], l[N], r[N];void init…...

Python3 元组、列表、字典、集合小结

前言 本文主要对Python中的元组、列表、字典、集合进行小结&#xff0c;主要内容包括知识点回顾、异同点、使用场景。 文章目录 前言一、知识点回顾1、列表&#xff08;List&#xff09;2、 元组&#xff08;Tuple&#xff09;3、 字典&#xff08;Dictionary&#xff09;4.、…...

2024会声会影破解免费序列号,激活全新体验!

会声会影2024序列号注册码是一款专业的视频编辑软件&#xff0c;它以其强大的功能和易用性受到了广大用户的喜爱。在这篇文章中&#xff0c;我将详细介绍会声会影2024序列号注册码的功能和特色&#xff0c;帮助大家更好地了解这款产品。 会声会影全版本绿色安装包获取链接&…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化&#xff1a;人工智能的自我改进与监管挑战 文章目录 递归进化&#xff1a;人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管&#xff1f;3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢&#xff0c;博主的学习进度也是步入了Java Mybatis 框架&#xff0c;目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学&#xff0c;希望能对大家有所帮助&#xff0c;也特别欢迎大家指点不足之处&#xff0c;小生很乐意接受正确的建议&…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!

简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求&#xff0c;并检查收到的响应。它以以下模式之一…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机&#xff08;无人驾驶飞行器&#xff0c;UAV&#xff09;技术的快速发展&#xff0c;其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统&#xff0c;无人机的“黑飞”&…...

Caliper 负载(Workload)详细解析

Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...

(一)单例模式

一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...

day36-多路IO复用

一、基本概念 &#xff08;服务器多客户端模型&#xff09; 定义&#xff1a;单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用&#xff1a;应用程序通常需要处理来自多条事件流中的事件&#xff0c;比如我现在用的电脑&#xff0c;需要同时处理键盘鼠标…...