LangChain学习之prompt格式化与解析器使用
1. 学习背景
在LangChain for LLM应用程序开发中课程中,学习了LangChain框架扩展应用程序开发中语言模型的用例和功能的基本技能,遂做整理为后面的应用做准备。视频地址:基于LangChain的大语言模型应用开发+构建和评估高
2. 先准备尝试调用OpenAI API
本实验基于jupyternotebook进行。
2.1先安装openai包、langchain包
!pip install openai
!pip install langchain
2.2 尝试调用openai包
import openai# 此处需要提前准备好可使用的openai KEY
openai.api_key = "XXXX"
openai.base_url = "XXXX"def get_completion(prompt, model = "gpt-3.5-turbo"):messages = [{"role": "user", "content": prompt}]response = openai.chat.completions.create(model = model,messages = messages,temperature = 0,)return response.choices[0].message.content
get_completion("What is 1+1?")
输出结果:
'1 + 1 equals 2.'
3.尝试用API解决邮件对话问题
3.1 邮件内容和风格
customer_email = """
Arrr, I be fuming that me blender lid \
flew off and splattered me kitchen walls \
with smoothie! And to make matters worse,\
the warranty don't cover the cost of \
cleaning up me kitchen. I need yer help \
right now, matey!
"""style = """American English \
in a calm and respectful tone
"""
3.2 构造成prompt
prompt = f"""Translate the text \
that is delimited by triple backticks \
into a style that is {style}.
text: ```{customer_email}```
"""
prompt
输出如下:
"Translate the text that is delimited by triple backticks into a style that is American English in a calm and respectful tone\n. \ntext: ```\nArrr, I be fuming that me blender lid flew off and splattered me kitchen walls with smoothie! And to make matters worse,the warranty don't cover the cost of cleaning up me kitchen. I need yer help right now, matey!\n```\n"
3.3 使用上述prompt得到答案
response = get_completion(prompt)
response
输出如下:
'I must express my frustration that my blender lid unexpectedly came off and caused my kitchen walls to be covered in smoothie splatters! And unfortunately, the warranty does not cover the cleaning costs of my kitchen. I kindly request your immediate assistance, my friend.'
4. 尝试用langchain解决
4.1 用langchain调用API
from langchain.chat_models import ChatOpenAI
chat = ChatOpenAI(api_key = "XXXX",base_url = "XXXX",temperature=0.0)
print(chat)
输出如下:
ChatOpenAI(client=<openai.resources.chat.completions.Completions object at 0x7f362ab4f340>,
async_client=<openai.resources.chat.completions.AsyncCompletions object at 0x7f362aba9d80>,
temperature=0.0, openai_api_key='sk-gGSeHiJn09Ydl6Q1655eCf128b3a42XXXXXXXXXXXXXX',
openai_api_base='XXXX', openai_proxy='')
4.2 构造prompt模板
注意和3.2的区别,一个用了f"“”“”“,一个直接”“”“”"。
template_string = """Translate the text \
that is delimited by triple backticks \
into a style that is {style}. \
text: ```{text}```
"""customer_style = """American English in a calm and respectful tone"""customer_email = """
Arrr, I be fuming that me blender lid \
flew off and splattered me kitchen walls \
with smoothie! And to make matters worse, \
the warranty don't cover the cost of \
cleaning up me kitchen. I need yer help \
right now, matey!
"""
4.3 调用ChatPromptTemplate
from langchain.prompts import ChatPromptTemplate
# 将构造的prompt模板化
prompt_template = ChatPromptTemplate.from_template(template_string)
# 模板中的占位符填充的参数
customer_messages = prompt_template.format_messages(style = customer_style,text = customer_email
)
print(type(customer_messages))
print(customer_messages[0])
输出如下:
<class 'list'>
content="Translate the text that is delimited by triple backticks into a style that is American English in a calm and respectful tone\n. text: ```\nArrr, I be fuming that me blender lid flew off and splattered me kitchen walls with smoothie! And to make matters worse, the warranty don't cover the cost of cleaning up me kitchen. I need yer help right now, matey!\n```\n"
4.4 使用LLM解决问题
# Call the LLM to translate to the style of the customer message
customer_response = chat(customer_messages)
print(customer_response.content)
输出如下:
Oh man, I 'm really frustrated that my blender lid flew off and made a mess of my kitchen walls with smoothie! And on top of that, the warranty doesn't cover the cost of cleaning up my kitchen. I could really use your help right now, buddy!
5. 调用langchain对邮件回复
5.1定义回复的prompt
service_reply = """Hey there customer, \
the warranty does not cover \
cleaning expenses for your kitchen \
because it's your fault that \
you misused your blender \
by forgetting to put the lid on before \
starting the blender. \
Tough luck! See ya!
"""service_style_pirate = """\
a polite tone \
that speaks in English Pirate\
"""# 继续使用前面定义的prompt_template,占位符用参数填充
service_messages = prompt_template.format_messages(style = service_style_pirate,text = service_reply)print(service_messages[0].content)
输出如下:
Translate the text that is delimited by triple backticks into a style that is a polite tone that speaks in English Pirate.
text: ```
Hey there customer, the warranty does not cover cleaning expenses for your kitchen because it's your fault that you misused your blender by forgetting to put the lid on before starting the blender. Tough luck! See ya!```
5.2 使用LLM解决问题
service_response = chat(service_messages)
print(service_response.content)
输出如下:
Ahoy there, me heartie! Unfortunately, the warranty be not coverin' the cost of cleanin' yer kitchen, as tis yer own fault for misusin' yer blender by forgettin' to put on the lid afore startin' the blendin'. Aye, 'tis a tough break indeed! Fare thee well, matey!
至此我们就完成了使用langchain去实现prompt的构造、转换和调用。
6. 用langchain转化回答为JSON格式
6.1 构造模板
# 顾客对产品的评论
customer_review = """\
This leaf blower is pretty amazing. It has four settings:\
candle blower, gentle breeze, windy city, and tornado. \
It arrived in two days, just in time for my wife's \
anniversary present. \
I think my wife liked it so much she was speechless. \
So far I've been the only one using it, and I've been \
using it every other morning to clear the leaves on our lawn. \
It's slightly more expensive than the other leaf blowers \
out there, but I think it's worth it for the extra features.
"""# 顾客意见形成模板
review_template = """\
For the following text, extract the following information:gift: Was the item purchased as a gift for someone else? \
Answer True if yes, False if not or unknown.delivery_days: How many days did it take for the product \
to arrive? If this information is not found, output -1.price_value: Extract any sentences about the value or price,\
and output them as a comma separated Python list.Format the output as JSON with the following keys:
gift
delivery_days
price_valuetext: {text}
"""from langchain.prompts import ChatPromptTemplate
# 构造模板,占位符信息用prompt填充
prompt_template = ChatPromptTemplate.from_template(review_template)
messages = prompt_template.format_messages(text=customer_review)
# 调用LLM,输入为prompt
response = chat(messages)
print(response.content)
输出如下:
{"gift": true,"delivery_days": 2,"price_value": "It's slightly more expensive than the other leaf blowers out there, but I think it's worth it for the extra features."
}
6.2 构造合适的prompt
print(type(response.content))
输出如下:
str
可以看到输出内容是字符串类型的,为了方便处理数据,我们需要的是JSON格式,因此还需要进行转化。
from langchain.output_parsers import ResponseSchema
from langchain.output_parsers import StructuredOutputParsergift_schema = ResponseSchema(name="gift", description="Was the item purchased as a gift for someone else? Answer True if yes, False if not or unknown.")
delivery_days_schema = ResponseSchema(name="delivery_days", description="How many days did it take for the product to arrive? If this information \is not found, output -1.")
price_value_schema = ResponseSchema(name="price_value", description="Extract any sentences about the value or price, and output them as a comma \separated Python list.")response_schemas = [gift_schema, delivery_days_schema,price_value_schema]
# 构造转换器
output_parser = StructuredOutputParser.from_response_schemas(response_schemas)
format_instructions = output_parser.get_format_instructions()
print(format_instructions)
输出如下:
The output should be a markdown code snippet formatted in the following schema, including the leading and trailing "```json" and "```":```json
{"gift": string // Was the item purchased as a gift for someone else? Answer True if yes, False if not or unknown."delivery_days": string // How many days did it take for the product to arrive? If this information is not found, output -1."price_value": string // Extract any sentences about the value or price, and output them as a comma separated Python list.
}```
LLM会根据构造的prompt进行回答,生成最终的回答结果。接着构造完整的prompt:
review_template_2 = """\
For the following text, extract the following information:gift: Was the item purchased as a gift for someone else? \
Answer True if yes, False if not or unknown.delivery_days: How many days did it take for the product\
to arrive? If this information is not found, output -1.price_value: Extract any sentences about the value or price,\
and output them as a comma separated Python list.text: {text}{format_instructions}
"""prompt = ChatPromptTemplate.from_template(template=review_template_2)
messages = prompt.format_messages(text=customer_review, format_instructions=format_instructions)
print(messages[0].content)
输出如下:
For the following text, extract the following information:gift: Was the item purchased as a gift for someone else? Answer True if yes, False if not or unknown.delivery_days: How many days did it take for the productto arrive? If this information is not found, output -1.price_value: Extract any sentences about the value or price,and output them as a comma separated Python list.text: This leaf blower is pretty amazing. It has four settings:candle blower, gentle breeze, windy city, and tornado. It arrived in two days, just in time for my wife's anniversary present. I think my wife liked it so much she was speechless. So far I've been the only one using it, and I've been using it every other morning to clear the leaves on our lawn. It's slightly more expensive than the other leaf blowers out there, but I think it's worth it for the extra features.The output should be a markdown code snippet formatted in the following schema, including the leading and trailing "```json" and "```":```json
{"gift": string // Was the item purchased as a gift for someone else? Answer True if yes, False if not or unknown."delivery_days": string // How many days did it take for the product to arrive? If this information is not found, output -1."price_value": string // Extract any sentences about the value or price, and output them as a comma separated Python list.
}```
6.3 使用LLM解决问题
response = chat(messages)
print(response.content)
输出如下:
```json
{"gift": "True","delivery_days": "2","price_value": "It's slightly more expensive than the other leaf blowers out there, but I think it's worth it for the extra features."
}```
进行格式转换
output_dict = output_parser.parse(response.content)
print(output_dict)
输出如下:
{'gift': 'True', 'delivery_days': '2', 'price_value': "It's slightly more expensive than the other leaf blowers out there, but I think it's worth it for the extra features."}
接下来查看输出类型:
type(output_dict)
输出如下:
dict
接下来就可以愉快的使用输出数据了。
总的来说,langchain对于格式化输出和prompt构造拥有较好的效果,可以很好使用。
相关文章:
LangChain学习之prompt格式化与解析器使用
1. 学习背景 在LangChain for LLM应用程序开发中课程中,学习了LangChain框架扩展应用程序开发中语言模型的用例和功能的基本技能,遂做整理为后面的应用做准备。视频地址:基于LangChain的大语言模型应用开发构建和评估高 2. 先准备尝试调用O…...

基于EasyX的贪吃蛇小游戏 - C语言
游戏基本功能演示: 1.主菜单界面 2.自定难度界面 在这里可以自行设定游戏的难度,包括蛇的移动速度,初始节数,以及默认模式,参考线(网格)。这些设定的数据都会在右上角的游戏属性栏中实时显示。…...
使用Docker辅助图像识别程序开发:在Docker中显示GUI、访问GPU、USB相机以及网络
目录概览 引言安装和配置安装docker安装nvidia-docker在docker中显示GUI在Docker中访问usb相机在Docker镜像中开放端口开启更多的GPU功能支持创建本地镜像中心一些可选参数上传镜像回收空间清理所有的无用镜像清理指定的镜像GPU Docker with Anaconda第一种方式:构建DockerFile…...

Java中常见错误-泛型擦除及桥接方法问题及解决方案
Java中泛型擦除及桥接方法 泛型擦除无界擦除上界擦除下界擦除 桥接方法演示案例wrong1wrong2wrong3right 原理总结 泛型擦除 泛型擦除是Java泛型机制的一个特性,它意味着**在编译期间,所有的泛型信息都会被移除,而在运行时,所…...
Linux 程序守护脚本
引言 程序是由代码形成的,代码是由人写的。只要是人,都会有疏忽的时候,导致写出的程序有bug,当然最严重的bug就是程序闪退。 本文旨在提供一个程序守护脚本,当监测到程序闪退后,立马将程序再起启动&#…...

跨境电商|Facebook Marketplace怎么做?
2016 年,Facebook打造了同名平台 Facebook Marketplace。通过利用 Facebook 现有的庞大客户群,该平台取得了立竿见影的成功,每月访问量将超过 10 亿。对于个人卖家和小企业来说,Facebook Marketplace是一个不错的销货渠道…...

.gitignore 文件
一.什么是 .gitignore 文件 在任何当前工作的 Git 仓库中,每个文件都是这样的: 追踪的(tracked)- 这些是 Git 所知道的所有文件或目录。这些是新添加(用 git add 添加)和提交(用 git commit 提…...

qt中实现多语言功能
qt中实现多语言功能 原理: 其本质就是生成ts文件,然后使用Linguist软件手工翻译,再生成qm文件,最后在主程序的开始加载不同的qm文件,实现多语言。 步骤: 修改程序文件 在pro文件中加入说明 TRANSLATI…...
数据结构与算法之 leetcode 513. 找树左下角的值 (BFS) 广度优先
513. 找树左下角的值 /*** Definition for a binary tree node.* function TreeNode(val, left, right) {* this.val (valundefined ? 0 : val)* this.left (leftundefined ? null : left)* this.right (rightundefined ? null : right)* }*/ /*** param {T…...
mysql中的函数
MySQL提供了丰富的内置函数,涵盖了字符串操作、数字计算、日期和时间处理、条件判断、聚合计算等多个方面。这些函数可以帮助开发者在查询和数据处理时更高效地完成任务。下面是对MySQL中常见的函数分类及其主要函数的介绍: 字符串函数 CONCAT()&#x…...
Shell正则表达式与文本处理器
一、grep 1. 正则表达式 是一种匹配字符串的方法,通过一些特殊符号,快速实现查找,删除,替换某特定字符串。 选项: -a 不要忽略二进制数据。 -A 显示该行之后的内容。 -b 显示该行之前的内容。 -c 计算符合范本样…...

双指针法 ( 三数之和 )
题目 :给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k ,同时还满足 nums[i] nums[j] nums[k] 0 。请 你返回所有和为 0 且不重复的三元组。 注意:答案中不可以包含重复…...
感染恶意代码之后怎么办?
隔离设备 立即将感染设备与网络隔离,断开与互联网和其他设备的连接。这可以防止恶意代码进一步传播到其他设备,并减少对网络安全的威胁。 确认感染 确认设备是否真的感染了恶意代码。这可能需要使用安全软件进行全面扫描,以检测和识别任何已…...

【计算机网络】P3 计算机网络协议、接口、服务的概念、区别以及计算机网络提供的三种服务方式
目录 协议什么是协议协议是水平存活的协议的组成 接口服务服务是什么服务原语 协议与服务的区别计算机网络提供的服务的三种方式面向连接服务与无连接服务可靠服务与不可靠服务有应答服务与无应答服务 协议 什么是协议 协议,就是规则的集合。 在计算机网络中&…...
多角度剖析事务和事件的区别
事务和事件这两个概念在不同的领域有着不同的含义,尤其是在计算机科学、数据库管理和软件工程中。下面从多个角度来剖析事务和事件的区别: 计算机科学与数据库管理中的事务 事务(Transaction): 定义:在数据库管理中,…...

模糊小波神经网络(MATLAB 2018)
模糊系统是一种基于知识或规则的控制系统,从属于智能控制,通过简化系统的复杂性,利用控制法来描述系统变量之间的关系,采用语言式的模糊变量来描述系统,不必对被控对象建立完整的数学模型。相比较传统控制策略…...
HTML布局
标准流: 标准流就是元素在页面中的默认排列方式,也就是元素在页面中的默认位置。 1.1 块元素----独占一行----从上到下排列 1.2 行内元素----不独占一行----从左到右排列,遇到边界换行 1.3 行内块元素----不独占一行…...

数据结构:双链表
数据结构:双链表 题目描述参考代码 题目描述 输入样例 10 R 7 D 1 L 3 IL 2 10 D 3 IL 2 7 L 8 R 9 IL 4 7 IR 2 2输出样例 8 7 7 3 2 9参考代码 #include <iostream>using namespace std;const int N 100010;int m; int idx, e[N], l[N], r[N];void init…...
Python3 元组、列表、字典、集合小结
前言 本文主要对Python中的元组、列表、字典、集合进行小结,主要内容包括知识点回顾、异同点、使用场景。 文章目录 前言一、知识点回顾1、列表(List)2、 元组(Tuple)3、 字典(Dictionary)4.、…...

2024会声会影破解免费序列号,激活全新体验!
会声会影2024序列号注册码是一款专业的视频编辑软件,它以其强大的功能和易用性受到了广大用户的喜爱。在这篇文章中,我将详细介绍会声会影2024序列号注册码的功能和特色,帮助大家更好地了解这款产品。 会声会影全版本绿色安装包获取链接&…...

C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序
一、开发准备 环境搭建: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 项目创建: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...

算法笔记2
1.字符串拼接最好用StringBuilder,不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...
C#学习第29天:表达式树(Expression Trees)
目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...
GitHub 趋势日报 (2025年06月06日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...