Linux基础IO【II】真的很详细
目录
一.文件描述符
1.重新理解文件
1.推论
2.证明
2.理解文件描述符
1.文件描述符的分配规则
3.如何理解文件操作的本质?
4.输入重定向和输出重定向
1.原理
2.代码实现重定向
3.dup函数
编辑
4.命令行中实现重定向
二.关于缓冲区
1.现象
2.重新理解缓冲区
3.缓冲区刷新策略问题
4.缓冲区的位置
编辑
5.如何解释刚刚的现象呢?
总结
今天,我们接着在上一篇文章的基础上,继续学习基础IO。观看本文章之前,建议先看:Linux基础IO【I】,那,我们就开始吧!
一.文件描述符
1.重新理解文件
文件操作的本质:进程和被打开文件之间的关系。
1.推论
我们先用一段代码和一个现象来引出我们今天要讨论的问题:
上码:
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <assert.h>
#include <string.h>
#include <unistd.h>
//我没有指明具体的路径,采用了字符串拼接的方式。
#define FILE_NAME(number) "log.txt" #numberint main()
{umask(0);int fd1 = open(FILE_NAME(1), O_WRONLY | O_CREAT, 0666);int fd2 = open(FILE_NAME(2), O_WRONLY | O_CREAT, 0666);int fd3 = open(FILE_NAME(3), O_WRONLY | O_CREAT, 0666);int fd4 = open(FILE_NAME(4), O_WRONLY | O_CREAT, 0666);int fd5 = open(FILE_NAME(5), O_WRONLY | O_CREAT, 0666);printf("fd1:%d\n", fd1);printf("fd2:%d\n", fd2);printf("fd3:%d\n", fd3);printf("fd4:%d\n", fd4);printf("fd5:%d\n", fd5);close(fd1);close(fd2);close(fd3);close(fd4);close(fd5);
}
看到输出的结果,各位大佬想到了什么?我想到了数组的下标。也许这和数组有这千丝万缕的关系,但我们都只是猜测,接下来就证明我们的猜测。
首先我们可以利用现在掌握的知识推导出这样一条逻辑链:
- 进程可以打开多个文件吗?可以,而且我们刚刚已经证实了。
- 所以系统中一定会存在大量的被打开的文件。
- 所以操作系统要不要把这些被打开的文件给管理起来?要。
- 所以如何管理?先描述,再组织。
- 操作系统为了管理这些文件,一定会在内核中创建相应的数据结构来表示文件。
- 这个数据结构就是struct_file结构体。里面包含了我们所需的大量的属性。
我们回到刚刚代码的运行结果上来:
为什么从3开始,0,1,2分别表示的是什么?
其实系统为一个处于运行态的进程默认打开了3个文件(3个标准输入输出流):
- stdin(标准输入流) :对应的是键盘。
- stdout(标准输出流): 对应的是显示器。
- stderr(标准错误流) :对应的是显示器。
上面我们提及的struct_file结构体在内核中的数据如下:
/** Open file table structure*/
struct files_struct {/** read mostly part*/atomic_t count;bool resize_in_progress;wait_queue_head_t resize_wait;struct fdtable __rcu *fdt;struct fdtable fdtab;/** written part on a separate cache line in SMP*/spinlock_t file_lock ____cacheline_aligned_in_smp;unsigned int next_fd;unsigned long close_on_exec_init[1];unsigned long open_fds_init[1];unsigned long full_fds_bits_init[1];struct file __rcu * fd_array[NR_OPEN_DEFAULT];
};
struct file {union {struct llist_node fu_llist;struct rcu_head fu_rcuhead;} f_u;struct path f_path;struct inode *f_inode; /* cached value */const struct file_operations *f_op;spinlock_t f_lock;enum rw_hint f_write_hint;atomic_long_t f_count;unsigned int f_flags;fmode_t f_mode;struct mutex f_pos_lock;loff_t f_pos;struct fown_struct f_owner;const struct cred *f_cred;struct file_ra_state f_ra;u64 f_version;
#ifdef CONFIG_SECURITYvoid *f_security;
#endif/* needed for tty driver, and maybe others */void *private_data;#ifdef CONFIG_EPOLLstruct list_head f_ep_links;struct list_head f_tfile_llink;
#endif /* #ifdef CONFIG_EPOLL */struct address_space *f_mapping;errseq_t f_wb_err;
}
2.证明
大家有没有好奇过:为什么我们C库函数fopen的返回值类型是FILE*,FILE是什么?当时老师肯定没给我们讲清楚,因为当时我们的知识储备不够。但现在,我们有必要知道FILE其实就是一个结构体类型。
//stdio.h
typedef struct _iobuf
{char* _ptr; //文件输入的下一个位置int _cnt; //当前缓冲区的相对位置char* _base; //文件初始位置int _flag; //文件标志int _file; //文件有效性int _charbuf; //缓冲区是否可读取int _bufsiz; //缓冲区字节数char* _tmpfname; //临时文件名
} FILE;
这3个标准输入输出流既然是文件,操作系统必定为其在系统中创建一个对应的struct file结构体。
为了证明我们的判断,我们可以:调用struct file内部的一个变量。
操作系统底层底层是用文件描述符来标识一个文件的。纵所周知,C文件操作函数是对系统接口的封装。所以FILE结构体中一定隐藏着一个字段来储存文件描述符。而且stdin,stdout,stderr都是FILE*类型的变量,
所以:
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <assert.h>
#include <string.h>
#include <unistd.h>
// 我没有指明具体的路径,采用了字符串拼接的方式。
#define FILE_NAME(number) "log.txt" #numberint main()
{printf("stdin:%d\n", stdin->_fileno);//调用struct file内部的一个变量printf("stdout:%d\n", stdout->_fileno);printf("stderr:%d\n", stderr->_fileno);umask(0);int fd1 = open(FILE_NAME(1), O_WRONLY | O_CREAT, 0666);int fd2 = open(FILE_NAME(2), O_WRONLY | O_CREAT, 0666);int fd3 = open(FILE_NAME(3), O_WRONLY | O_CREAT, 0666);int fd4 = open(FILE_NAME(4), O_WRONLY | O_CREAT, 0666);int fd5 = open(FILE_NAME(5), O_WRONLY | O_CREAT, 0666);printf("fd1:%d\n", fd1);printf("fd2:%d\n", fd2);printf("fd3:%d\n", fd3);printf("fd4:%d\n", fd4);printf("fd5:%d\n", fd5);close(fd1);close(fd2);close(fd3);close(fd4);close(fd5);
}
来啦,终于来啦!!终于证明我们的推断。
2.理解文件描述符
进程中打开的文件都有一个唯一的文件描述符,用来标识这个文件,进而对文件进行相关操作。其实,我们之前就接触到了文件描述符,我们简单回忆一下:
- 调用open函数的返回值,就是一个文件描述符。只不过,我们打开的文件的文件描述符默认是从3开始的,0.1.2是系统自动为进程打开的。
- 调用close传入的参数。
- 调用write,read函数的第一个参数。
可见,文件描述符对我们进行文件操作有多么重要。文件描述符就像一个人身份证,在一个进程中具有唯一性。
文件描述符fd的取值范围:文件描述符的取值范围通常是从0到系统定义的最大文件描述符值。
当Linux新建一个进程时,会自动创建3个文件描述符0、1和2,分别对应标准输入、标准输出和错误输出。C库中与文件描述符对应的是文件指针,与文件描述符0、1和2类似,我们可以直接使用文件指针stdin、stdout和stderr。意味着stdin、stdout和stderr是“自动打开”的文件指针。
在Linux系统中,文件描述符0、1和2分别有以下含义:
- 文件描述符0(STDIN_FILENO):它是标准输入文件描述符,通常与进程的标准输入流(stdin)相关联。它用于接收来自用户或其他进程的输入数据。默认情况下,它通常与终端或控制台的键盘输入相关联。
- 文件描述符1(STDOUT_FILENO):它是标准输出文件描述符,通常与进程的标准输出流(stdout)相关联。它用于向终端或控制台输出数据,例如程序的正常输出、结果和信息。
- 文件描述符2(STDERR_FILENO):它是标准错误文件描述符,通常与进程的标准错误流(stderr)相关联。它用于输出错误消息、警告和异常信息到终端或控制台。与标准输出不同,标准错误通常用于输出与程序执行相关的错误和调试信息。
这些文件描述符是在进程创建时自动打开的,并且可以在程序运行期间使用。它们是程序与用户、终端和操作系统之间进行输入和输出交互的重要通道。通过合理地使用这些文件描述符,程序可以接收输入、输出结果,并提供错误和调试信息,以实现与用户的交互和数据处理。
1.文件描述符的分配规则
文件描述符的分配规则为:从0开始查找,使用最小的且没有占用的文件描述符。
所以:我们是否可是手动的关闭,系统为我们自动带的3个文件呢?so try!
先试着关闭一下0号文件描述符对应的标准输入流
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <assert.h>
#include <string.h>
#include <unistd.h>
// 我没有指明具体的路径,采用了字符串拼接的方式。
#define FILE_NAME(number) "log.txt" #numberint main()
{close(0);umask(0);int fd1 = open(FILE_NAME(1), O_WRONLY | O_CREAT, 0666);int fd2 = open(FILE_NAME(2), O_WRONLY | O_CREAT, 0666);int fd3 = open(FILE_NAME(3), O_WRONLY | O_CREAT, 0666);int fd4 = open(FILE_NAME(4), O_WRONLY | O_CREAT, 0666);int fd5 = open(FILE_NAME(5), O_WRONLY | O_CREAT, 0666);printf("fd1:%d\n", fd1);printf("fd2:%d\n", fd2);printf("fd3:%d\n", fd3);printf("fd4:%d\n", fd4);printf("fd5:%d\n", fd5);close(fd1);close(fd2);close(fd3);close(fd4);close(fd5);
}
结果,我们自己打开的文件就把0号文件描述符给占用了。接着,我们试试关闭之后写入受什么影响。
没关闭之前:
#include<stdio.h>
#include<unistd.h>
#include<string.h>
int main()
{//close(0);char buffer[1024];memset(buffer,0,sizeof(buffer));scanf("%s",buffer);printf("%s\n",buffer);
}
关闭后:
#include<stdio.h>
#include<unistd.h>
#include<string.h>
int main()
{close(0);char buffer[1024];memset(buffer,0,sizeof(buffer));scanf("%s",buffer);printf("%s\n",buffer);
}
我们发现:scanf函数直接无法使用,输入功能无法使用。原因是什么?
这是因为我们将0号文件描述符关闭后,0号文件描述符就不指向标准输入流了。但是当使用输入函数输入时,他们仍然会向0号中输入,但0号已经不指向输入流了,所以就无法完成输入。
大家也可以自行将1号文件描述符和2号文件描述符试着关闭一下,观察一下关闭前后有什么不同之处。
3.如何理解文件操作的本质?
- 我们说:文件操作的本质是进程和被打开文件之间的关系。对这句话我们应该如何理解呢?
- 文件描述符为什么就是数组的下标呢?
- 如何理解键盘,显示器也是文件?
如上图:
进程想要打开位于磁盘上的my.txt文件,文件加载到内存之后,操作系统为了管理该文件,为其创建了一个struct file结构体来保存该文件的属性信息。此时,内存中已经存在系统默认打开的标准输入流,标准输出流,标准错误流对应的struct file结构体。但是,系统中有很多进程,,一定会有大量被打开的文件,进程如何分清个哪文件属于该进程呢?我们知道task_struct结构体保存着关于该进程的所有属性。其中有一个struct file_struct*类型的指针files,指向一个struct file_struct 类型的结构体,该结构体中存在着一个struct file*类型的数组,数组的元素为struct file*类型。正好存放指向我们为每一个文件创建的struct file结构体的指针。所以,根据这个数组,我们就会很顺利的找到每一个文件的struct file结构体。进而找到每一个属于该进程的文件,然后对文件进行相关操作。由于数组的下标具有很好的唯一性,所以系统就向上层返回存放文件的struct file结构体指针的元素下标,供上层函数利用这个下标对文件进行操作。
通过这段文字,相信大家已经对我们刚刚提出的几个问题已经有了答案!
4.输入重定向和输出重定向
1.原理
重定向的原理就是:上层调用的fd不变,在内核中更改fd对应的struct file*地址。
如下图:
我们调用了close(1)关闭了输出文件流。然后打开了myfile文件,根据文件描述符的分配规则(从0开始查找最小且没有被占用的充当自己的文件描述符)。myfile的文件描述符。但是上层并不知道输入文件流对应的文件描述符已经发生改变,所以当调用printf函数时,仍然向1号文件描述符中输出。但是1号描述符对应的地址已发生改变,变为myfile,所以本想使用printf往显示器中输入的东西就会输入到myfile文件中。这就是输出重定向。
输入重定向和输出重定向原理是一样的,只不过输入重定向关闭的是输入流,输出重定向关闭的是输出文件流。
我们调用了close(0)关闭了输入文件流。然后打开了myfile文件,根据文件描述符的分配规则(从0开始查找最小且没有被占用的充当自己的文件描述符)。myfile的文件描述符。但是上层并不知道输入文件流对应的文件描述符已经发生改变,所以当调用printf函数时,仍然向0号文件描述符中输出。但是0号描述符对应的地址已发生改变,变为myfile,所以就会输入到myfile文件中。这就是输入重定向。
2.代码实现重定向
说了这么多,是不是该实现一下了:
先来实现一下输出重定向:
#include<stdio.h>
#include<unistd.h>
#include<string.h>
#include<sys/stat.h>
#include<sys/types.h>
#include<fcntl.h>
int main()
{close(1);umask(0); int n=open("wang.txt",O_RDWR|O_CREAT,0666);printf("wanghan");close(n);
}
什么鬼?失蒜了?,其实,这时候我们输出的内容都在缓冲区内,没被刷新出来,我们需要手动刷新一下缓冲区。把代码修改一下:
#include<stdio.h>
#include<unistd.h>
#include<string.h>
#include<sys/stat.h>
#include<sys/types.h>
#include<fcntl.h>
int main()
{close(1);umask(0); int n=open("wang.txt",O_RDWR|O_CREAT,0666);printf("wanghan");fflush(stdout);//刷新缓冲区close(n);
}
看,我们想要打印在显示器中的东西,就被我们成功输出到了指定的文件中。
接着,我们尝试一下写输入重定向:
#include<stdio.h>
#include<unistd.h>
#include<string.h>
#include<sys/stat.h>
#include<sys/types.h>
#include<fcntl.h>
int main()
{close(0);umask(0); int n=open("wang.txt",O_RDWR|O_CREAT,0666);scanf("%d",stdin);char arr[1024]="conglution you,you are successful";write(0,arr,strlen(arr));close(n);
}
但是,这搞个重定向这么复杂,是不是有点太low了?所以专门用于重定向的函数就出现了。
3.dup函数
其中,我们最常用的就是dup2。
返回值:
- 如果成功,返回newfd。
- 如果失败,返回-1。
原理:将oldfd中的struct file结构体地址拷贝到newfd中。
实例:
输出重定向
#include<stdio.h>
#include<unistd.h>
#include<string.h>
#include<sys/stat.h>
#include<sys/types.h>
#include<fcntl.h>
int main()
{umask(0); int n=open("wang.txt",O_RDWR|O_CREAT|O_TRUNC);dup2(n,1);//尝试写一下输出重定向。printf("successful");fflush(stdout);close(n);
}
达到了我们的预期效果。
输入重定向
#include<stdio.h>
#include<unistd.h>
#include<string.h>
#include<sys/stat.h>
#include<sys/types.h>
#include<fcntl.h>
int main()
{int n=open("wang.txt",O_RDWR);dup2(n,0);//尝试写一下输入重定向。char buffer[64];while(1){printf(">");if(fgets(buffer,sizeof buffer,stdin)==nullptr) break; printf("%s",buffer);}close(n);return 0;
}
4.命令行中实现重定向
我们在命令行中,通过输入相关指令也可以实现重定向的功能:
'>':输入重定向
'>>':追加重定向
'<<':输出重定向
这些命令底层都是用dup实现的,大家感兴趣的可以尝试写一下代码。
二.关于缓冲区
1.现象
#include<stdio.h>
#include<stdlib.h>
#include<unistd.h>
#include<string.h>
int main()
{//C接口printf("hello printf\n");fprintf(stdout,(char*)"hello fprintf\n");fputs("hello fputs\n",stdout);//系统接口char *msg="hello write\n";write(1,msg,strlen(msg));fork();return 0;}
我们观察到:把运行结果重定向到文件中时,C语言函数都被打印了2次,唯独操作系统接口被打印了一次。这是为什么?但是我们知道这种现象一定和缓冲区有关。
2.重新理解缓冲区
缓冲区本质就是一段内存!!谁申请的?属于谁?为什么要申请 ?
我们先来一个故事乐呵一下:
张三在广东,他的好朋友李四在北京。他们俩关系嘎嘎好,所以,张三总喜欢把自己用过的东西送给李四,比如包浆的键盘等等。头一开始,张三 都是骑车或者坐火车亲自把东西给李四送过。一来一会都得花小半个月的时间。有一次,舍友对他说:"咱们楼下不是有顺丰嘛,你干嘛不快递给他寄过去呢?"。一语点醒梦中人啊!!从那以后,张三就给李四发快递给他送东西。这样,张三就可以有时间学习和干其他事情了。所以人们都喜欢用快递发送东西,节省时间。
广东就相当于内存,北京就相当于磁盘,张三就相当于一个进程,楼下的顺丰就相当于内存中的缓冲区。内存往磁盘中写东西是非常慢的,就像张三亲自给李四送东西一样。那么缓冲区的意义是什么呢?节省进程进行数据IO的时间
但是,我们并没有做让数据写入到缓冲区的操作呀?
我们使用的fwrite函数,与其把它当做一个文件写入函数,不如把它当做一个拷贝函数,将数据从缓冲区拷贝到“内存”或“外设”。
3.缓冲区刷新策略问题
同样的数据量 ,一次性全部写入到磁盘中,和多次少量写入到外设中,哪种效率最高?
毫无疑问,一次性写入磁盘中效率最高,因为数据的读取和写入占用的时间很短,大部分时间都用来等待外设就绪。
缓冲区一定会结合自己的设备,定制自己的刷新策略:
- 行刷新:即行缓存,对应的设备就是显示器,我们试用的“\n”采用的刷新方式都是行刷新。虽然使用将数据一次刷新到显示器上效率最高,但是人类更习惯于按行读取内容,所以为了给用户更好的体验,使用行刷新更好。
- 立即刷新:相当于没有缓冲区。
- 缓冲区满:全刷新,常用于向磁盘文件中写入。效率最高。
有两种情况不符合刷新策略的规定
- 用户强制刷新,比如fflush(stdout)。
- 进程退出,一般都要刷新缓冲区。
4.缓冲区的位置
缓冲区在哪?指的是什么缓冲区?
首先,我们可以肯定:这个缓冲区一定不在内核中,因为如果缓冲区在内核中,write也会打印两次。
我们之前谈论的所有的缓冲区,都指的是用户级语言层面给我们提供的缓冲区。
我们之前提到过:stdout,stdin,stderr的类型都是FILE*类型,FILE是一个结构体,该结构体中除了包含一个fd,还有一个缓冲区。所以我们强制刷新缓冲区调用fflush时,都要传入一个FILE*类型的指针;我们在关闭一个进程调用fclose时,也要传入一个FILE*类型的指针。因为FILE结构体内部包含一个缓冲区。
如图:
5.如何解释刚刚的现象呢?
明白了上面的内容,我们就能够明白刚刚的现象了。
没有进行重定向。stdout默认使用的是行刷新,在进程调用fork()之前,三条C语言函数打印的信息已经显示到了显示器上(外设)。FILE内部的缓冲区不存在对应的数据了。
如果进行了重定向,写入不再是显示器,而是磁盘文件,采用的刷新策略是缓冲区满再刷新。之前的3条打印的信息,虽然带来‘\n’,但是不足以让stdout缓冲区写满。数据并没有被刷新。执行fork时,stdout属于父进程。创建子进程时,紧接着就是进程退出,谁先退出,就要先进行缓冲区刷新(也就是修改数据,发生写时拷贝)。父子进程在退出时都会刷新一次缓冲区,所以就会打印两次。
write为什么没有被打印两次呢?
上面的过程和write无关,因为write没有FILE,而用的是fd,也就无法使用C语言层面的缓冲区。
总结
- C语言的一些IO接口需要熟练掌握,例如fwrite,fread等等。明白C文件函数和系统接口之间的关系。C函数是底层库函数的封装。
- 当前当前路径是根据进程的cwd来决定的,C语言默认打开三个流:stdin、stdout、stderr。他们三个 分别占用0、1、2三个文件描述符。
- 系统层面的IO交互接口有 write、open、close、read等需要理解。
- 文件=内容+属性;一个文件是否为空都会存在属性,而操作系统为了维护文件的属性,先描述再组织,将文件的属性组织为一个结构体file,而 每个file以双链表的形式相连。
- 因为Linux下一切皆文件,所以文件也需要被组织起来,于是file结构体的指针file*被组织起来封装在一个叫做files_struct 指针数组内,而数组下标就是 文件描述符。
- 重定向是 根据更改文件描述符的指向的struct file结构体 做到的,可以使用dup2接口做调整。
- 缓冲区本质上是一块内存区域,而缓冲区分为系统层缓冲区和语言层缓冲区,在C语言中缓冲区被封装在FILE结构体内,每一个文件都有自己的缓冲区。
- 缓冲区满了会刷新到内核中,而 刷新的本质就是写入。
写到最后,本文到这里就结束了,谢谢大家观看,如果文中有什么错误,欢迎大家批评指正!!
相关文章:

Linux基础IO【II】真的很详细
目录 一.文件描述符 1.重新理解文件 1.推论 2.证明 2.理解文件描述符 1.文件描述符的分配规则 3.如何理解文件操作的本质? 4.输入重定向和输出重定向 1.原理 2.代码实现重定向 3.dup函数 编辑 4.命令行中实现重定向 二.关于缓冲区 1.现象 …...

【C++】模板及模板的特化
目录 一,模板 1,函数模板 什么是函数模板 函数模板原理 函数模板的实例化 推演(隐式)实例化 显示实例化 模板的参数的匹配原则 2,类模板 什么是类模板 类模板的实例化 二,模板的特化 1,类模板的特化 全特化…...

2001-2023年上市公司数字化转型测算数据(含原始数据+处理代码+计算结果)
2001-2023年上市公司数字化转型测算数据(含原始数据处理代码计算结果)(吴非) 1、时间:2001-2023年 2、来源:上市公司年报 3、指标:行业代码、行业名称、证券简称、是否发生ST或ST或PT、是否发生暂停上市…...

ICRA 2024:基于视觉触觉传感器的物体表⾯分类的Sim2Real双层适应⽅法
⼈们通常通过视觉来感知物体表⾯的性质,但有时需要通过触觉信息来补充或替代视觉信息。在机器⼈感知物体属性⽅⾯,基于视觉的触觉传感器是⽬前的最新技术,因为它们可以产⽣与表⾯接触的⾼分辨率 RGB 触觉图像。然⽽,这些图像需要⼤…...

代理模式(设计模式)
文章目录 静态代理动态代理代理模式的应用场景动态代理和静态代理的区别 代理模式就是给一个对象提供一个代理,并由代理对象控制对原对象的引用。它使得客户不能直接与真正的目标对象通信。代理对象是目标对象的代表,其他需要与这个目标对象打交道的操作…...

C++函数参数传递
C 函数传参 在C中,函数传递参数的方式主要有三种: 按值传递(pass by value)按引用传递(pass by reference)按指针传递(pass by pointer)。 比较与总结 按值传递:适用…...

软考初级网络管理员_09_网络单选题
1.下列Internet应用中对实时性要求最高的是()。 电子邮件 Web浏览 FTP文件传输 IP电话 2.在Internet中的大多数服务(如WWW、FTP等)都采用()模型。 星型 主机/终端 客户机/服务器 网状 3.子网掩码的作用是()。 可以用来寻找网关 可以区分IP和MAC 可以识别子网 可以…...

曲线拟合 | 二次B样条拟合曲线
B 样条曲线拟合实例:能平滑化曲线 1. 实例1 为MASS包中mcycle数据集。它测试了一系列模拟的交通车事故中,头部的加速度,以此来评估头盔的性能。times为撞击时间(ms),accel为加速度(g)。首先导入数据&#…...

delphi FDMemTable1.SourceView遍历各行数据,取任意行数据无需Next移动指针了。TFDDatSView
for m : 0 to FDMemTable1.SourceView.Rows.Count - 1 do begin if FDMemTable_SP.SourceView.Rows.ItemsI[m].GetData(0) varNull then Continue; end; 9行7列的值。 FDMemTable1.Data.DataView.Rows.ItemsI[9].ValueI[7]; FDMemTable1.Table.Ro…...

为什么选择 ABBYY FineReader PDF ?
帮助用户们对PDF文件进行快速的编辑处理,同时也可以快速识别PDF文件里的文字内容,并且可以让用户们进行文本编辑,所以可以有效提升办公效率。 ABBYY-ABBYY Finereader 15 Win-安装包:https://souurl.cn/OY2L3m 高级转换功能 ABBY…...

php遇到的问题
1、 underfined at line 3 in xxx.php , 错误提示,注释这行代码 // error_reporting(DEBUG ? E_ALL : 0); 目录:config/config.php...

零基础入门学用Arduino 第二部分(二)
重要的内容写在前面: 该系列是以up主太极创客的零基础入门学用Arduino教程为基础制作的学习笔记。个人把这个教程学完之后,整体感觉是很好的,如果有条件的可以先学习一些相关课程,学起来会更加轻松,相关课程有数字电路…...

旅游行业电商平台:数字化转型的引擎与未来发展趋势
引言 旅游行业数字化转型的背景和重要性 随着信息技术的飞速发展,数字化转型成为各行业发展的必然趋势。旅游行业,作为一个高度依赖信息和服务的领域,数字化转型尤为重要。通过数字化手段,旅游行业能够实现资源的高效配置、服务的…...

Ubuntu 22.04安装 docker
安装过程和指令 # 1.升级 apt sudo apt update # 2.安装docker sudo apt install docker.io docker-compose # 3.将当前用户加入 docker组 sudo usermod -aG docker ${USER} # 4. 重启 # 5. 查看镜像 docker ps -a 或者 docker images # 6. 下载镜像 docker pull hello-world …...

【Gitlab】访问默认PostgreSQL数据库
本地访问PostgreSQL gitlab有可以直接访问内部PostgreSQL的命令 sudo gitlab-rails dbconsole # 或者 sudo gitlab-psql -d gitlabhq_production效果截图 常用SQL # 查看用户状态 select id,name,email,state,last_sign_in_at,updated_at,last_credential_check_at,last_act…...

乐鑫ESP32-C3芯片应用,启明云端WT32C3-S5模组:简化产品硬件设计
在数字化浪潮的推动下,物联网(IoT)正迅速成为连接现实世界与数字世界的桥梁。芯片作为智能设备的心脏,其重要性不言而喻。 乐鑫推出的ESP32-C3芯片以其卓越的性能和丰富的功能,为智能物联网领域带来了新的活力,我将带您深入了解这…...

算法刷题【二分法】
题目: 注意题目中说明了数据时非递减的,那么这样就存在二分性,能够实现logn的复杂度。二分法每次只能取寻找特定的某一个值,所以我们要分别求左端点和有端点。 分析第一组用例得到结果如下: 成功找到左端点8 由此可知࿰…...

.NET MAUI Sqlite程序应用-数据库配置(一)
项目名称:Ownership(权籍信息采集) 一、安装 NuGet 包 安装 sqlite-net-pcl 安装 SQLitePCLRawEx.bundle_green 二、创建多个表及相关字段 Models\OwnershipItem.cs using SQLite;namespace Ownership.Models {public class fa_rural_base//基础数据…...

基于WPF技术的换热站智能监控系统09--封装水泵对象
1、添加用户控件 2、编写水泵UI 控件中用到了Viewbox控件,Viewbox控件是WPF中一个简单的缩放工具,它可以帮助你放大或缩小单个元素,同时保持其宽高比。通过样式和属性设置,你可以创建出既美观又功能丰富的用户界面。在实际开发中…...

GLM+vLLM 部署调用
GLMvLLM 部署调用 vLLM 简介 vLLM 框架是一个高效的大型语言模型(LLM)推理和部署服务系统,具备以下特性: 高效的内存管理:通过 PagedAttention 算法,vLLM 实现了对 KV 缓存的高效管理,减少了…...

leetcode 122 买卖股票的最佳时机||(动态规划解法)
题目分析 题目描述的已经十分清楚了,不做过多阐述 算法原理 状态表示 我们假设第i天的最大利润是dp[i] 我们来画一下状态机 有两个状态,买入后和卖出后,我们就可以使用两个dp表来解决问题 f[i]表示当天买入后的最大利润 g[i]表示当天卖出…...

C++设计模式---组合模式
1、介绍 组合模式(Composite)是一种结构型设计模式,也被称为部分-整体模式。它将复杂对象视为由多个简单对象(称为“组件”)组成的树形结构,这些组件能够共享相同的行为。每个组件都可能包含一个或多个子组…...

工厂方法模式(大话设计模式)C/C++版本
工厂方法模式 C 参考:https://www.cnblogs.com/Galesaur-wcy/p/15926711.html #include <iostream> #include <memory> using namespace std;// 运算类 class Operation { private:double _NumA;double _NumB;public:void SetNumA(){cout << &…...

[NCTF 2018]flask真香
打开题目后没有提示框,尝试扫描后也没有什么结果,猜想是ssti。所以尝试寻找ssti的注入点并判断模版。 模版判断方式: 在url地址中输入{7*7} 后发现不能识别执行。 尝试{{7*7}} ,执行成功,继续往下走注入{{7*7}},如果执…...

性能测试3【搬代码】
1.Linux服务器性能分析命令及详解 2.GarafanainfluxDB监控jmeter数据 3.GarafanaPrometheus监控服务器和数据库性能 4.性能瓶颈分析以及性能调优方案详解 一、无界面压测时, top load average:平均负载 htop 二、Garafana监控平台 传统项目:centosphpm…...

<tesseract><opencv><Python>基于python和opencv,使用ocr识别图片中的文本并进行替换
前言 本文是在python中,利用opencv处理图片,利用tesseractOCR来识别图片中的文本并进行替换的一种实现方法。 环境配置 系统:windows 平台:visual studio code 语言:python 库:pyqt5、opencv、tesseractOCR 代码介绍 本文程序功能实现,主要依赖于tesseractOCR这个库,…...

海南云亿商务咨询有限公司解锁抖音电商新纪元
在当今数字化浪潮中,抖音电商以其独特的魅力和强大的用户基础,迅速成为企业营销的新宠。海南云亿商务咨询有限公司,作为专注于抖音电商服务的领先企业,凭借专业的团队和丰富的经验,为众多企业提供了高效、精准的电商服…...

arm64架构 统信UOS搭建PXE无盘启动Linux系统(麒麟桌面为例)
arm64架构 统信UOS搭建PXE无盘启动Linux系统(麒麟桌面为例) 搞了好久搞得头疼哎 1、准备服务器UOS服务器 准备服务IP 这里是192.168.1.100 1.1、安装程序 yum install -y dhcp tftp tftp-server xinetd nfs-utils rpcbind 2、修改配置 2.1、修改dhcpd.c…...

SpringBoot 实现 阿里云语音通知(SingleCallByTts)
目录 一、准备工作1.开通 阿里云语音服务2.申请企业资质3.创建语音通知模板,审核通过4.调用API接口---SingleCallByTts5.调试API接口---SingleCallByTts 二、代码实现1.导入依赖 com.aliyun:aliyun-java-sdk-dyvmsapi:3.0.22.创建工具类,用于发送语音通知…...

IDEA 连接GitHub仓库并上传项目(同时解决SSH问题)
目录 1 确认自己电脑上已经安装好Git 2 添加GitHub账号 2.1 Setting -> 搜索GitHub-> ‘’ -> Log In with Token 2.2 点击Generate 去GitHub生成Token 2.3 勾选SSH后其他不变直接生成token 2.4 然后复制token添加登录账号即可 3 点击导航栏中VCS -> Create…...