递推算法计算信号特征
在线算法(在线计算或递推计算)能够在不存储全部数据的情况下逐步更新信号的特征信息,非常适合资源受限的单片机应用场景。
用途:单片机边采集ADC边计算,最终将采集的信号特征计算结果。平台通过长期监控信号特征来确定采集的设备工作正常。用途机台长期监控。
以下是几种常见的信号特征信息计算及其对应的在线算法:
1. 均值(Mean)
递推均值公式
mean n = ( n − 1 ) ⋅ mean n − 1 + x n n \text{mean}_n = \frac{(n-1) \cdot \text{mean}_{n-1} + x_n}{n} meann=n(n−1)⋅meann−1+xn
其中,( n ) 是当前采样点的数量,( x_n ) 是第 ( n ) 个采样值,( \text{mean}_{n-1} ) 是前 ( n-1 ) 个采样值的均值。
2. 均方根(RMS, Root Mean Square)
递推 RMS 公式:
RMS n = ( n − 1 ) ⋅ ( RMS n − 1 ) 2 + x n 2 n \text{RMS}_n = \sqrt{\frac{(n-1) \cdot (\text{RMS}_{n-1})^2 + x_n^2}{n}} RMSn=n(n−1)⋅(RMSn−1)2+xn2
3. 方差(Variance)
递推方差公式:
var n = ( n − 1 ) ⋅ var n − 1 + ( x n − mean n ) ( x n − mean n − 1 ) n \text{var}_n = \frac{(n-1) \cdot \text{var}_{n-1} + (x_n - \text{mean}_n)(x_n - \text{mean}_{n-1})}{n} varn=n(n−1)⋅varn−1+(xn−meann)(xn−meann−1)
4. 标准差(Standard Deviation)
标准差是方差的平方根:
stddev n = var n \text{stddev}_n = \sqrt{\text{var}_n} stddevn=varn
5. 峰峰值(Peak-to-Peak Value)
更新最大值和最小值:
if (x_n > max) max = x_n;
if (x_n < min) min = x_n;
峰峰值计算公式:
peak-to-peak = max − min \text{peak-to-peak} = \text{max} - \text{min} peak-to-peak=max−min
6. 平均绝对偏差(Mean Absolute Deviation, MAD)
递推平均绝对偏差公式:
MAD n = ( n − 1 ) ⋅ MAD n − 1 + ∣ x n − mean n ∣ n \text{MAD}_n = \frac{(n-1) \cdot \text{MAD}_{n-1} + |x_n - \text{mean}_n|}{n} MADn=n(n−1)⋅MADn−1+∣xn−meann∣
7. 信号功率(Power)
递推信号功率公式:
power n = ( n − 1 ) ⋅ power n − 1 + x n 2 n \text{power}_n = \frac{(n-1) \cdot \text{power}_{n-1} + x_n^2}{n} powern=n(n−1)⋅powern−1+xn2
8. 信号能量(Energy)
信号能量是所有样本平方的累加和:
energy n = energy n − 1 + x n 2 \text{energy}_n = \text{energy}_{n-1} + x_n^2 energyn=energyn−1+xn2
示例代码更新
以下是使用递推算法计算上述信号特征信息的示例代码:
#include "stm32f0xx_hal.h"
#include <math.h>// 全局变量
volatile uint32_t count = 0;
volatile float mean = 0;
volatile float variance = 0;
volatile float stddev = 0;
volatile float max = -FLT_MAX;
volatile float min = FLT_MAX;
volatile float mad = 0;
volatile float power = 0;
volatile float energy = 0;
volatile uint8_t trigger_active = 0;// ADC 和定时器句柄
ADC_HandleTypeDef hadc;
TIM_HandleTypeDef htim;// 初始化 ADC
void ADC_Init(void) {__HAL_RCC_ADC1_CLK_ENABLE();hadc.Instance = ADC1;hadc.Init.Resolution = ADC_RESOLUTION_12B;hadc.Init.ScanConvMode = DISABLE;hadc.Init.ContinuousConvMode = DISABLE;hadc.Init.DiscontinuousConvMode = DISABLE;hadc.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T1_TRGO;hadc.Init.DataAlign = ADC_DATAALIGN_RIGHT;hadc.Init.NbrOfConversion = 1;HAL_ADC_Init(&hadc);// 配置 ADC 通道ADC_ChannelConfTypeDef sConfig = {0};sConfig.Channel = ADC_CHANNEL_0;sConfig.Rank = ADC_RANK_CHANNEL_NUMBER;HAL_ADC_ConfigChannel(&hadc, &sConfig);
}// 初始化定时器
void TIM_Init(void) {__HAL_RCC_TIM1_CLK_ENABLE();htim.Instance = TIM1;htim.Init.Prescaler = 8000 - 1; // 1 MHz 时钟,1 kHz 采样率htim.Init.CounterMode = TIM_COUNTERMODE_UP;htim.Init.Period = 1000 - 1; // 1 kHzhtim.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;HAL_TIM_Base_Init(&htim);// 配置定时器触发 ADCTIM_MasterConfigTypeDef sMasterConfig = {0};sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;HAL_TIMEx_MasterConfigSynchronization(&htim, &sMasterConfig);
}// ADC 转换完成中断服务函数
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc) {if (trigger_active) {uint32_t adc_value = HAL_ADC_GetValue(hadc);float x_n = (float)adc_value;// 更新样本计数count++;// 计算均值float old_mean = mean;mean = ((count - 1) * mean + x_n) / count;// 计算方差variance = ((count - 1) * variance + (x_n - mean) * (x_n - old_mean)) / count;stddev = sqrt(variance);// 更新最大值和最小值if (x_n > max) max = x_n;if (x_n < min) min = x_n;// 计算平均绝对偏差mad = ((count - 1) * mad + fabs(x_n - mean)) / count;// 计算信号功率power = ((count - 1) * power + x_n * x_n) / count;// 计算信号能量energy += x_n * x_n;}
}// 触发信号检测函数
void check_trigger_signal(void) {if (/* 检测到触发信号 */) {trigger_active = 1;HAL_ADC_Start_IT(&hadc);HAL_TIM_Base_Start(&htim);} else {trigger_active = 0;HAL_ADC_Stop_IT(&hadc);HAL_TIM_Base_Stop(&htim);}
}// 主函数
int main(void) {HAL_Init();ADC_Init();TIM_Init();while (1) {check_trigger_signal();// 其他处理}
}
在这个示例代码中,我们展示了如何使用递推算法来计算多个信号特征信息,包括均值、方差、标准差、最大值、最小值、平均绝对偏差、信号功率和能量。这些算法在每次新的采样点到达时更新,无需存储所有数据,适用于单片机环境。
相关文章:
递推算法计算信号特征
在线算法(在线计算或递推计算)能够在不存储全部数据的情况下逐步更新信号的特征信息,非常适合资源受限的单片机应用场景。 用途:单片机边采集ADC边计算,最终将采集的信号特征计算结果…...
spring-boot-configuration-processor注释处理器
开源项目SDK:https://github.com/mingyang66/spring-parent 个人文档:https://mingyang66.github.io/raccoon-docs/#/ spring-boot-configuration-processor是springboot提供的一个注释处理器(annotation processor),它用于在编译…...
Python和MATLAB粘性力接触力动态模型半隐式欧拉算法
🎯要点 🎯运动力模型计算制作过程:🖊相机捕捉网球运动图,制定运动数学模型,数值微分运动方程 | 🖊计算运动,欧拉算法离散积分运动,欧拉-克罗默算法微分运动方程 &#…...
webstorm无法识别tsconfig.json引用项目配置文件中的路径别名
问题 vite项目模板中,应用的ts配置内容写在tsconfig.app.json文件中,并在tsconfig.json通过项目引用的方式导入 {"files": [],"references": [{"path": "./tsconfig.app.json"},{"path": "./t…...
qiankun微前端:qiankun+vite+vue3+ts(未完待续..)
目录 什么是微前端 目前现有的微前端 好处 使用 子应用的页面在主应用里显示 什么是微前端 微前端是一种多个团队通过独立发布功能的方式来共同构建现代化 web 应用的技术手段及方法策略。 我的理解就是将一个大型的前端应用拆分成多个模块,每个微前端模块可以由…...
001:开源交易系统开发实战开篇
本专栏采用融入【主力思维】的方法学,包含数据抓取、特征模型开发、历史验证回归测试、每日动态风险评估管理等技术,较大的增强股票投资胜率,让IT开发者拥有一套属于自己思路的专用交易软件。 先简要介绍系统成功和项目,后续持续…...
Pytorch实战(一):LeNet神经网络
文章目录 一、模型实现1.1数据集的下载1.2加载数据集1.3模型训练1.4模型预测 LeNet神经网络是第一个卷积神经网络(CNN),首次采用了卷积层、池化层这两个全新的神经网络组件,接收灰度图像,并输出其中包含的手写数字&…...
RabbitMq的基础及springAmqp的使用
RabbitMq 官网:RabbitMQ: One broker to queue them all | RabbitMQ 什么是MQ? mq就是消息队列,消息队列遵循这先入先出原则。一般用来解决应用解耦,异步消息,流量削峰等问题,实现高性能,高可用…...
uniapp uniCloud云开发
uniCloud概述 uniCloud 是 DCloud 联合阿里云、腾讯云、支付宝云,为开发者提供的基于 serverless 模式和 js 编程的云开发平台。 uniCloud 的 web控制台地址:https://unicloud.dcloud.net.cn 文档:https://doc.dcloud.net.cn/uniCloud/ un…...
智能扫地机,让生活电器更加便民-NV040D扫地机语音方案
一、语音扫地机开发背景: 随着人工智能和物联网技术的飞速发展,智能家居设备已成为现代家庭不可或缺的一部分。其中,扫地机作为家庭清洁的重要工具,更是得到了广泛的关注和应用。 然而,传统的扫地机在功能和使用上仍存…...
【后端面试题】【中间件】【NoSQL】ElasticSearch索引机制和高性能的面试思路
Elasticsearch的索引机制 Elasticsearch使用的是倒排索引,所谓的倒排索引是相对于正排索引而言的。 在一般的文件系统中,索引是文档映射到关键字,而倒排索引则相反,是从关键字映射到文档。 如果没有倒排索引的话,想找…...
【漏洞复现】时空智友ERP updater.uploadStudioFile接口处存在任意文件上传
0x01 产品简介 时空智友ERP是一款基于云计算和大数据技术的企业资源计划管理系统。该系统旨在帮助企业实现数字化转型,提高运营效率、降低成本、增强决策能力和竞争力,时空智友ERP系统涵盖了企业的各个业务领域,包括财务管理、供应链管理、生…...
[leetcode hot 150]第五百三十题,二叉搜索树的最小绝对差
题目: 给你一个二叉搜索树的根节点 root ,返回 树中任意两不同节点值之间的最小差值 。 差值是一个正数,其数值等于两值之差的绝对值。 解析: minDiffInBST 方法是主要方法。创建一个 ArrayList 来存储树的节点值。inorderTrave…...
【Docker】可视化平台Portainer
文章目录 Portainer的特点Portainer的安装步骤注意事项 Docker的可视化工具Portainer是一个轻量级的容器管理平台,它为用户提供了一个直观的图形界面来管理Docker环境。以下是关于Portainer的详细介绍和安装步骤: Portainer的特点 轻量级:P…...
MySQL高级-MVCC-原理分析(RR级别)
文章目录 1、RR隔离级别下,仅在事务中第一次执行快照读时生成ReadView,后续复用该ReadView2、总结 1、RR隔离级别下,仅在事务中第一次执行快照读时生成ReadView,后续复用该ReadView 而RR 是可重复读,在一个事务中&…...
压力测试Monkey命令参数和报告分析
目录 常用参数 -p <测试的包名列表> -v 显示日志详细程度 -s 伪随机数生成器的种子值 --throttle < 毫秒> --ignore-crashes 忽略崩溃 --ignore-timeouts 忽略超时 --monitor-native-crashes 监视本地崩溃代码 --ignore-security-exceptions 忽略安全异常 …...
C# Benchmark
创建控制台项目(或修改现有项目的Main方法代码),Nget导入Benchmark0.13.12,创建测试类: public class StringBenchMark{int[] numbers;public StringBenchMark() {numbers Enumerable.Range(1, 20000).ToArray();}[Be…...
算法金 | 协方差、方差、标准差、协方差矩阵
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 抱个拳,送个礼 1. 方差 方差是统计学中用来度量一组数据分散程度的重要指标。它反映了数据点与其均值之间的偏离程度。在…...
FastAPI教程II
本文参考FastAPI教程https://fastapi.tiangolo.com/zh/tutorial Cookie参数 定义Cookie参数与定义Query和Path参数一样。 具体步骤如下: 导入Cookie:from fastapi import Cookie声明Cookie参数,声明Cookie参数的方式与声明Query和Path参数…...
Facebook的投流技巧有哪些?
相信大家都知道Facebook拥有着巨大的用户群体和高转化率,在国外社交推广中的影响不言而喻。但随着Facebook广告的竞争越来越激烈,在Facebook广告上获得高投资回报率也变得越来越困难。IPIDEA代理IP今天就教大家如何在Facebook上投放广告的技巧࿰…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...
阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...
2024年赣州旅游投资集团社会招聘笔试真
2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...
Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?
在大数据处理领域,Hive 作为 Hadoop 生态中重要的数据仓库工具,其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式,很多开发者常常陷入选择困境。本文将从底…...
中医有效性探讨
文章目录 西医是如何发展到以生物化学为药理基础的现代医学?传统医学奠基期(远古 - 17 世纪)近代医学转型期(17 世纪 - 19 世纪末)现代医学成熟期(20世纪至今) 中医的源远流长和一脉相承远古至…...
【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论
路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中(图1): mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...
Vue 模板语句的数据来源
🧩 Vue 模板语句的数据来源:全方位解析 Vue 模板(<template> 部分)中的表达式、指令绑定(如 v-bind, v-on)和插值({{ }})都在一个特定的作用域内求值。这个作用域由当前 组件…...
【免费数据】2005-2019年我国272个地级市的旅游竞争力多指标数据(33个指标)
旅游业是一个城市的重要产业构成。旅游竞争力是一个城市竞争力的重要构成部分。一个城市的旅游竞争力反映了其在旅游市场竞争中的比较优势。 今日我们分享的是2005-2019年我国272个地级市的旅游竞争力多指标数据!该数据集源自2025年4月发表于《地理学报》的论文成果…...
