【PYG】使用datalist定义数据集,创建一个包含多个Data对象的列表并使用DataLoader来加载这些数据
为了使用你提到的封装方式来创建一个包含多个 Data 对象的列表并使用 DataLoader 来加载这些数据,我们可以按照以下步骤进行:
- 创建数据:生成节点特征矩阵、边索引矩阵和标签。
- 封装数据:使用
Data对象将这些数据封装起来。 - 使用
DataLoader:确保批次数据的形状符合期望。
具体步骤
1. 创建数据
首先,我们创建节点特征矩阵、边索引矩阵和标签数据。
import torch
from torch_geometric.data import Data
from torch_geometric.loader import DenseDataLoader # 更新导入路径# 参数设置
num_samples = 100 # 样本数
num_nodes = 10 # 每个图中的节点数
num_node_features = 8 # 每个节点的特征数# 生成数据
features = [torch.randn((num_nodes, num_node_features)) for _ in range(num_samples)]
labels = [torch.randn((num_nodes, 1)) for _ in range(num_samples)]
adj_matrix = torch.zeros((num_nodes, num_nodes), dtype=torch.float)
for i in range(num_nodes):adj_matrix[i, (i + 1) % num_nodes] = 1adj_matrix[(i + 1) % num_nodes, i] = 1
print(adj_matrix)
2. 封装数据
使用 Data 对象将每个样本的数据封装起来。
data_list = [Data(x=features[i], adj=adj_matrix, y=labels[i]) for i in range(num_samples)]
3. 使用 DataLoader
# 创建 DataLoader
loader = DenseDataLoader(data_list, batch_size=32, shuffle=True)# 从 DenseDataLoader 中获取一个批次的数据并查看其形状
for data in loader:print("Batch node features shape:", data.x.shape) # 期望输出形状为 (32, 10, 8)print("Batch adjacency matrix shape:", data.adj.shape) # 期望输出形状为 (32, 10, 10)print("Batch labels shape:", data.y.shape) # 期望输出形状为 (32, 10, 1)break # 仅查看第一个批次的形状
总结
- 生成数据:我们生成了包含节点特征、边索引和标签的样本数据。
- 封装数据:我们使用
Data对象将每个样本的数据封装起来。
完整代码
import torch
from torch_geometric.data import Data
from torch_geometric.loader import DenseDataLoader # 更新导入路径# 参数设置
num_samples = 100 # 样本数
num_nodes = 10 # 每个图中的节点数
num_node_features = 8 # 每个节点的特征数# 生成数据
features = [torch.randn((num_nodes, num_node_features)) for _ in range(num_samples)]
labels = [torch.randn((num_nodes, 1)) for _ in range(num_samples)]
adj_matrix = torch.zeros((num_nodes, num_nodes), dtype=torch.float)
for i in range(num_nodes):adj_matrix[i, (i + 1) % num_nodes] = 1adj_matrix[(i + 1) % num_nodes, i] = 1
print(adj_matrix)data_list = [Data(x=features[i], adj=adj_matrix, y=labels[i]) for i in range(num_samples)]# 创建 DataLoader
loader = DenseDataLoader(data_list, batch_size=32, shuffle=True)# 从 DenseDataLoader 中获取一个批次的数据并查看其形状
for data in loader:print("Batch node features shape:", data.x.shape) # 期望输出形状为 (32, 10, 8)print("Batch adjacency matrix shape:", data.adj.shape) # 期望输出形状为 (32, 10, 10)print("Batch labels shape:", data.y.shape) # 期望输出形状为 (32, 10, 1)break # 仅查看第一个批次的形状
相关文章:
【PYG】使用datalist定义数据集,创建一个包含多个Data对象的列表并使用DataLoader来加载这些数据
为了使用你提到的封装方式来创建一个包含多个 Data 对象的列表并使用 DataLoader 来加载这些数据,我们可以按照以下步骤进行: 创建数据:生成节点特征矩阵、边索引矩阵和标签。封装数据:使用 Data 对象将这些数据封装起来。使用 D…...
【设计模式】【创建型5-2】【工厂方法模式】
文章目录 工厂方法模式工厂方法模式的结构示例产品接口具体产品工厂接口具体工厂客户端代码 实际的使用 工厂方法模式 工厂方法模式的结构 产品(Product):定义工厂方法所创建的对象的接口。 具体产品(ConcreteProduct࿰…...
python API自动化(Pytest+Excel+Allure完整框架集成+yaml入门+大量响应报文处理及加解密、签名处理)
1.pytest数据参数化 假设你需要测试一个登录功能,输入用户名和密码后验证登录结果。可以使用参数化实现多组输入数据的测试: 测试正确的用户名和密码登录成功 测试正确的用户名和错误的密码登录失败 测试错误的用户名和正确的密码登录失败 测试错误的用户名和密码登…...
【Postman学习】
Postman是一个非常流行的API开发和测试工具,广泛用于Web服务的开发、测试和调试。它提供了一个图形界面,允许用户轻松地构建、发送和管理HTTP(S)请求,同时查看和分析响应。下面是对Postman接口测试工具的详细解释: 1. Postman简介…...
【Linux】IO多路复用——select,poll,epoll的概念和使用,三种模型的特点和优缺点,epoll的工作模式
文章目录 Linux多路复用1. select1.1 select的概念1.2 select的函数使用1.3 select的优缺点 2. poll2.1 poll的概念2.2 poll的函数使用2.3 poll的优缺点 3. epoll3.1 epoll的概念3.2 epoll的函数使用3.3 epoll的优点3.4 epoll工作模式 Linux多路复用 IO多路复用是一种操作系统的…...
IBCS 虚拟专线——让企业用于独立IP
在当今竞争激烈的商业世界中,企业的数字化运营对网络和服务器的性能有着极高的要求。作为一家企业的 IT 主管,我深刻体会到了在网络和服务器配置方面所面临的种种挑战,以及 IBCS 虚拟专线带来的革命性改变。 我们企业在业务扩张的过程中&…...
驾驭巨龙:Perl中大型文本文件的处理艺术
驾驭巨龙:Perl中大型文本文件的处理艺术 Perl,这门被亲切称为“实用提取和报告语言”的编程语言,自从诞生之日起,就以其卓越的文本处理能力闻名于世。在面对庞大的文本文件时,Perl的强大功能更是得到了充分的体现。本…...
Kafka~特殊技术细节设计:分区机制、重平衡机制、Leader选举机制、高水位HW机制
分区机制 Kafka 的分区机制是其实现高吞吐和可扩展性的重要特性之一。 Kafka 中的数据具有三层结构,即主题(topic)-> 分区(partition)-> 消息(message)。一个 Kafka 主题可以包含多个分…...
springcloud-config 客户端启用服务发现client的情况下使用metadata中的username和password
为了让spring admin 能正确获取到 spring config的actuator的信息,在eureka的metadata中添加了metadata.user.user metadata.user.password eureka.instance.metadata-map.user.name${spring.security.user.name} eureka.instance.metadata-map.user.password${spr…...
云计算 | 期末梳理(中)
1. 经典虚拟机的特点 多态(Polymorphism):支持多种类型的OS。重用(Manifolding):虚拟机的镜像可以被反复复制和使用。复用(Multiplexing):虚拟机能够对物理资源时分复用。2. 系统接口 最基本的接口是微处理器指令集架构(ISA)。应用程序二进制接口(ABI)给程序提供使用硬件资源…...
pytest测试框架pytest-order插件自定义用例执行顺序
pytest提供了丰富的插件来扩展其功能,本章介绍插件pytest-order,用于自定义pytest测试用例的执行顺序。pytest-order是插件pytest-ordering的一个分支,但是pytest-ordering已经不再维护了,建议大家直接使用pytest-order。 官方文…...
吴恩达机器学习 第三课 week2 推荐算法(上)
目录 01 学习目标 02 推荐算法 2.1 定义 2.2 应用 2.3 算法 03 协同过滤推荐算法 04 电影推荐系统 4.1 问题描述 4.2 算法实现 05 总结 01 学习目标 (1)了解推荐算法 (2)掌握协同过滤推荐算法(Collabo…...
MySQL CASE 表达式
MySQL CASE表达式 一、CASE表达式的语法二、 常用场景1,按属性分组统计2,多条件统计3,按条件UPDATE4, 在CASE表达式中使用聚合函数 三、CASE表达式出现的位置 一、CASE表达式的语法 -- 简单CASE表达式 CASE sexWHEN 1 THEN 男WHEN 2 THEN 女…...
Unity3D 游戏数据本地化存储与管理详解
在Unity3D游戏开发中,数据的本地化存储与管理是一个重要的环节。这不仅涉及到游戏状态、玩家信息、游戏设置等关键数据的保存,还关系到游戏的稳定性和用户体验。本文将详细介绍Unity3D中游戏数据的本地化存储与管理的技术方法,并给出相应的代…...
昇思25天学习打卡营第1天|初学教程
文章目录 背景创建环境熟悉环境打卡记录学习总结展望未来 背景 参加了昇思的25天学习记录,这里给自己记录一下所学内容笔记。 创建环境 首先在平台注册账号,然后登录,按下图操作,创建环境即可 创建好环境后进入即可࿰…...
ctfshow-web入门-命令执行(web59-web65)
目录 1、web59 2、web60 3、web61 4、web62 5、web63 6、web64 7、web65 都是使用 highlight_file 或者 show_source 1、web59 直接用上一题的 payload: cshow_source(flag.php); 拿到 flag:ctfshow{9e058a62-f37d-425e-9696-43387b0b3629} 2、w…...
Websocket在Java中的实践——最小可行案例
大纲 最小可行案例依赖开启Websocket,绑定路由逻辑类 测试参考资料 WebSocket是一种先进的网络通信协议,它允许在单个TCP连接上进行全双工通信,即数据可以在同一时间双向流动。WebSocket由IETF标准化为RFC 6455,并且已被W3C定义为…...
python请求报错::requests.exceptions.ProxyError: HTTPSConnectionPool
在发送网页请求时,发现很久未响应,最后报错: requests.exceptions.ProxyError: HTTPSConnectionPool(hostsvr-6-9009.share.51env.net, port443): Max retries exceeded with url: /prod-api/getInfo (Caused by ProxyError(Unable to conne…...
【Unity】Excel配置工具
1、功能介绍 通过Excel表配置表数据,一键生成对应Excel配置表的数据结构类、数据容器类、已经二进制数据文件,加载二进制数据文件获取所有表数据 需要使用Excel读取的dll包 2、关键代码 2.1 ExcelTool类 实现一键生成Excel配置表的数据结构类、数据…...
001 线性查找(lua)
文章目录 迭代器主程序 迭代器 -- 定义一个名为 linearSearch 的函数,它接受两个参数:data(一个数组)和 target(一个目标值) function linearSearch(data, target) -- 使用 for 循环遍历数组 data&…...
基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...
大数据零基础学习day1之环境准备和大数据初步理解
学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...
【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...
ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放
简介 前面两期文章我们介绍了I2S的读取和写入,一个是通过INMP441麦克风模块采集音频,一个是通过PCM5102A模块播放音频,那如果我们将两者结合起来,将麦克风采集到的音频通过PCM5102A播放,是不是就可以做一个扩音器了呢…...
uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...
【HTML-16】深入理解HTML中的块元素与行内元素
HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...
EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)
参考官方文档:https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java(供 Kotlin 使用) 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...
Element Plus 表单(el-form)中关于正整数输入的校验规则
目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入(联动)2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...
10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...
