当前位置: 首页 > news >正文

R语言基础(六):函数

R语言基础(一):注释、变量
R语言基础(二):常用函数
R语言基础(三):运算
R语言基础(四):数据类型
R语言基础(五):流程控制语句

7. 函数

函数是一组完成特定功能的语句。

7.1 内置函数

R语言系统中提供许多内置函数,用户可以直接使用

> seq(1,5)  #得到一个序列
[1] 1 2 3 4 5
> mean(2:8) #平均值
[1] 5
> x = c(-3,-1,1,2,3,4,5)
> mean(x,trim=0.2) #去除左右 20%的数据再计算
[1] 1.8
> median(x) #中位数
[1] 2
> max(22,33) #最大值
[1] 33

R语言中包含常用的数学函数,比如四舍五入、对数函数、三角函数等。

7.2 自定义函数

自定义数使用function声明,函数声明包括参数(可选)和返回值(可选)

#没有参数的函数,f1是函数名

f1 <- function(){
for(i in 1:5){
print(i)
}
}
#调用函数
f1()
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
#有参数的函数,a是自定义的参数
f2 <- function(a){
for(i in 1:a){
print(i)
}
}
#调用函数,需要传参数
f2(3)
[1] 1
[1] 2
[1] 3
f2()
Error in f2() : 缺少参数"a",也没有缺省值
#带默认值的函数
f3 <- function(a=3,b=5){
for(i in a:b){
print(i)
}
}
f3(3,5)
[1] 3
[1] 4
[1] 5
#按参数名赋值
f3(b=5,a=2)
[1] 2
[1] 3
[1] 4
[1] 5
#有参数的函数,a是自定义的参数
f4 <- function(a,b){
sum=0
for(i in a:b){
sum=sum+i
}
#也可以直接写sum,省略return
return(sum)
}
s=f4(1,3) #调用并得到返回值
s
[1] 6

相关文章:

R语言基础(六):函数

R语言基础(一)&#xff1a;注释、变量 R语言基础(二)&#xff1a;常用函数 R语言基础(三)&#xff1a;运算 R语言基础(四)&#xff1a;数据类型 R语言基础(五)&#xff1a;流程控制语句 7. 函数 函数是一组完成特定功能的语句。 7.1 内置函数 R语言系统中提供许多内置函数&…...

[C++] 简单序列化

前言 序列化(Serialization) 是将对象的状态信息转换为可以存储或传输的形式的过程。在序列化期间&#xff0c;对象将其当前状态写入到临时或持久性存储区。以后&#xff0c;可以通过从存储区中读取或反序列化对象的状态&#xff0c;重新创建该对象。 使用 序列化 std::array&…...

Autosar Configuration(十三)SomeIP之配置TCP/IP

本系列教程是根据实际项目开发中总结的经验所得,如发现有不对的地方,还请指正。 目录Autosar Configuration(一)Davinci Developer-工具介绍 Autosar Configuration(二)Davinci Developer-SWC配置 Autosar Configuration(三) Security之Crypto配置 Autosar Configurat…...

滤波算法 | 无迹卡尔曼滤波(UKF)算法及其Python实现

文章目录简介UKF滤波1. 概述和流程2. Python代码第一个版本a. KF滤波b. UKF滤波第二个版本简介 上一篇文章&#xff0c;我们介绍了UKF滤波公式及其MATLAB代码。在做视觉测量的过程中&#xff0c;基于OpenCV的开发包比较多&#xff0c;因此我们将UKF的MATLAB代码转到python中&a…...

IMU 积分的误差状态空间方程推导

文章目录0. 前言1. 离散时间的IMU运动学方程2. 状态变量定义3. 补充公式4. IMU误差状态空间方程推导4.1. 旋转误差 δr^i1\delta\hat{\mathbf{r}}_{i1}δr^i1​4.2. 速度误差 δv^i1\delta\hat{\mathbf{v}}_{i1}δv^i1​4.3. 平移误差 δpi1\delta \mathbf{p}_{i1}δpi1​4.4. …...

VirtualBox的克隆与复制

快照太多&#xff0c;想整合成1个文件怎么办&#xff1f; 最近&#xff0c;我就遇到一个问题。快照太多了。比较占用空间怎么办&#xff1f; 错误做法 一开始&#xff0c;我是这么操作的&#xff0c;选中某个快照&#xff0c;然后选择删除…然后我登录虚拟机后&#xff0c;发…...

每天5分钟玩转机器学习算法:逆向概率的问题是什么?贝叶斯公式是如何解决的?

本文重点 前面我们已经知道了贝叶斯公式,以及贝叶斯公式在机器学习中的应用,那么贝叶斯公式究竟解决了一个什么样的问题呢?贝叶斯是为了解决逆向概率的问题。 正向的概率和逆向的概率 正向概率:假设袋子里面有N个白球,有M个黑球,你伸手一摸,那么问题就是你摸出黑球的概…...

游戏闲聊之游戏是怎么赚钱的

其实一般情况下不太爱写这种文章&#xff0c;简单说就一点&#xff0c;这个行业的人我惹不起。 1、外挂 所谓外挂&#xff0c;是指通过技术手段&#xff0c;提供辅助游戏的工具&#xff0c;方便玩家获得一些额外的能力&#xff1b; 这事我特意咨询过律师&#xff0c;外挂分两…...

Redis高频面试题汇总(下)

目录 1.Redis中什么是Big Key(大key) 2.Big Key会导致什么问题 3.如何发现 bigkey&#xff1f; 4.为什么redis生产环境慎用keys *命令 5.如何处理大量 key 集中过期问题 6.使用批量操作减少网络传输 7.缓存穿透 8.缓存击穿 9.缓存雪崩 10.缓存污染&#xff08;或满了…...

Windows修改Docker安装目录修改Docker镜像目录,镜像默认存储位置存放到其它盘

Windows安装Docker&#xff0c;默认是安装在C盘&#xff0c;下载镜像后会占用大量空间&#xff0c;这时需要调整镜像目录&#xff1b;场景&#xff1a;不想连服务器或者没有服务器&#xff0c;想在本地调试服务&#xff0c;该需求就非常重要。基于WSL2安装docker后&#xff0c;…...

376. 摆动序列——【Leetcode每日刷题】

376. 摆动序列 如果连续数字之间的差严格地在正数和负数之间交替&#xff0c;则数字序列称为 摆动序列 。第一个差&#xff08;如果存在的话&#xff09;可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。 例如&#xff0c; [1, 7, 4, 9, 2, 5] 是一个…...

mgre实验

实验思路 1、首先根据拓扑结构合理分配IP地址&#xff0c;并对各个路由器的IP地址和R5环回接口的IP地址进行配置。 2、让私网中的边界路由器对ISP路由器做缺省路由。 3、根据实验要求&#xff0c;对需要配置不同类型认证的路由器进行认证配置&#xff0c;和需要不同封装的协议…...

一文彻底了解Zookeeper(介绍篇)

zookeeper 是什么&#xff1f; zookeeper是一个分布式协作框架&#xff0c;提供高可用&#xff0c;高性能&#xff0c;强一致等特性 zookeeper 有哪些应用场景&#xff1f; 分布式锁&#xff1a;分布式锁是指在分布式环境中&#xff0c;多个进程或线程需要互斥地访问某个共享…...

1. ELK Stack 理论篇之什么是ELK Stack?

ELK Stack 理论篇之什么是ELK Stack?1.1 什么是 ELK Stack&#xff1f;1.2 ELK Stack的发展史1.2.1 Elasticsearch1.2.2 引入 Logstash 和 Kibana&#xff0c;产品更强大1.2.3 社区越来越壮大&#xff0c;用例越来越丰富1.2.4 然后我们向 ELK 中加入了 Beats1.2.5 那么&#x…...

两道有关链表的练习

目录 一、分割链表 二、奇偶链表 一、分割链表 给你一个链表的头节点 head 和一个特定值 x &#xff0c;请你对链表进行分隔&#xff0c;使得所有 小于 x 的节点都出现在 大于或等于 x 的节点之前。 你不需要 保留 每个分区中各节点的初始相对位置。 示例 1&#xff1a; 输…...

Python uiautomator2安卓自动化测试

一、前言 uiautomator2是Python对Android设备进行UI自动化的库&#xff0c;支持USB和WIFI链接&#xff0c;可以实现获取屏幕上任意一个APP的任意一个控件属性&#xff0c;并对其进行任意操作。 重点是它可以实现安卓自动化采集&#xff0c;甚至是群控采集&#xff0c;且安装和…...

Leetcode. 160相交链表

文章目录指针解法指针解法 核心思路 &#xff1a; 先 分别求两个链表的长度 然后长的链表先走 差距步&#xff08;长-短&#xff09; 最后长链表和短链表同时走 &#xff0c;第一地址相同的就是交点 &#xff0c;注意一定是地址相同 不可能出现上图这种情况 &#xff0c;因为C1…...

MDPs —— 马尔可夫决策定义与算法

文章目录MDPs 定义——由实例开始时序决策问题给游戏增点乐子*为什么要有折扣游戏的解——原则所以&#xff0c;什么是 MDPs&#xff1f;MDPs 的基本原理、表示光环原理效用的求解是反向传播的原则不变条件MDPs 的表示MDPs 求解效用迭代法缺点原则迭代法MDPs 定义——由实例开始…...

【C++】图

本文包含了图的基本概念 1.相关概念 1.1 无/有向 无向图&#xff1a;每一个顶点之间的连线没有方向 有向图&#xff1a;连线有方向&#xff08;类似离散数学的二元关系 <A,B>代表从A到B的边&#xff0c;有方向&#xff09; <A,B>中A为始点&#xff0c;B为终点在…...

尾递归优化

文章目录1. 前言2. 什么尾调用&#xff08;Tail Call&#xff09;&#xff1f;3. 尾调用优化4. Linux内核下的尾递归优化使用5. 参考资料1. 前言 限于作者能力水平&#xff0c;本文可能存在谬误&#xff0c;对此给读者带来的损失&#xff0c;作者不错任何承诺。 2. 什么尾调用…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢

随着互联网技术的飞速发展&#xff0c;消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁&#xff0c;不仅优化了客户体验&#xff0c;还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用&#xff0c;并…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

生成 Git SSH 证书

&#x1f511; 1. ​​生成 SSH 密钥对​​ 在终端&#xff08;Windows 使用 Git Bash&#xff0c;Mac/Linux 使用 Terminal&#xff09;执行命令&#xff1a; ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" ​​参数说明​​&#xff1a; -t rsa&#x…...

DBAPI如何优雅的获取单条数据

API如何优雅的获取单条数据 案例一 对于查询类API&#xff0c;查询的是单条数据&#xff0c;比如根据主键ID查询用户信息&#xff0c;sql如下&#xff1a; select id, name, age from user where id #{id}API默认返回的数据格式是多条的&#xff0c;如下&#xff1a; {&qu…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...

宇树科技,改名了!

提到国内具身智能和机器人领域的代表企业&#xff0c;那宇树科技&#xff08;Unitree&#xff09;必须名列其榜。 最近&#xff0c;宇树科技的一项新变动消息在业界引发了不少关注和讨论&#xff0c;即&#xff1a; 宇树向其合作伙伴发布了一封公司名称变更函称&#xff0c;因…...

Bean 作用域有哪些?如何答出技术深度?

导语&#xff1a; Spring 面试绕不开 Bean 的作用域问题&#xff0c;这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开&#xff0c;结合典型面试题及实战场景&#xff0c;帮你厘清重点&#xff0c;打破模板式回答&#xff0c…...