当前位置: 首页 > news >正文

排序(堆排序、快速排序、归并排序)-->深度剖析(二)

前言

前面介绍了冒泡排序、选择排序、插入排序、希尔排序,作为排序中经常用到了算法,还有堆排序快速排序归并排序

堆排序(HeaSort)

堆排序的概念

堆排序是一种有效的排序算法,它利用了完全二叉树的特性。在C语言中,堆排序通常通过构建一个最大堆(或最小堆),然后逐步调整堆结构,最终实现排序。

代码实现

堆排序是一种基于二叉堆的排序算法,它通过将待排序的元素构建成一个二叉堆,然后逐步移除堆顶元素并将其放置在数组的尾部,同时维护堆的性质,直至所有元素都被排序。

注意:第一个for循环中的(n-1-1)/ 2 的含义

  • 第一个减1是由n-1个元素
  • 第二个减1是除以2是父亲节点。以为我们调整的是每一个根节点。(非叶子节点)
//堆排序
void HeapSort(int* a, int n)
{//建堆for(int i = (n - 1 - 1) / 2; i >= 0; i--){AdjustDown(a,n,i);}//排序int end = n - 1;while(end > 0){Swap(&a[end], &a[0]);AdjustDown(a, end, 0);--end;}	
}

其中AdjustDown是建立堆的函数,我们要建立一个大堆,将替换到上上面的小值,向下调整,保持大堆的结构。

代码如下:

//向下调整
void AdjustDown(int* a, int n, int parent)
{int child = parent * 2 + 1;while (child < n){if (child + 1 < n && a[child + 1] > a[child]){child++;}if (a[parent] < a[child]){Swap(&a[parent], &a[child]);parent = child;child = parent * 2 + 1;}else{break;}}}

堆排序的复杂度分析

堆排序是一种常用的排序算法,其时间复杂度通常为O(nlogn)。在C语言中实现堆排序时,时间复杂度的分析主要涉及到两个阶段:构建初始堆和进行堆排序。

  • 构建初始堆:从最后一个非叶子节点开始,逐步向上调整,直到根节点满足堆的性质。这个过程的时间复杂度为O(n),因为需要对每个非叶子节点进行一次调整。
  • 进行堆排序:堆排序的过程涉及到多次交换堆顶元素和最后一个元素,并对剩余的元素进行调整。每次交换后,堆的大小减一,并对新的堆顶元素进行调整。这个过程的时间复杂度为O(nlogn),因为每次调整的时间复杂度为O(logn),总共需要进行n-1次调整。

快速排序(Quick Sort)

快速排序的概念

快速排序(Quick Sort)是一种高效的排序算法,它的基本思想是通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,然后再分别对这两部分记录继续进行排序,以达到整个序列有序的目的。在C语言中,快速排序的实现通常涉及到递归函数的编写,以及对数组进行分区(partition)操作。

霍尔版本(hoare)

在这里插入图片描述

在这里我们是要,定义一个关键字(keyi)进行分区,然后分别向左右进行递归。

代码实现

int part1(int* a, int left, int right)
{int mid = GetmidNum(a,left,right);Swap(&a[left], &a[mid]);int keyi = left;while (left < right){while (left < right && a[right] >= a[keyi])right--;while (left < right && a[left] <=a[keyi])left++;Swap(&a[left], &a[right]);}Swap(&a[keyi], &a[left]);keyi = left;return keyi;
}

挖坑法

挖坑法类似于霍尔方法,挖坑就是记住关键字,保证关键字就是一个坑位,比关键字值小(大)的时候就入坑位,此时,这个值位置作为新的坑位直至两个前后指针指向同一个坑位。

在这里插入图片描述

代码实现

int part2(int* a, int left, int right)
{int mid = GetmidNum(a, left, right);Swap(&a[left], &a[mid]);int keyi = a[left];int hole = left;while (left < right){while (left < right && a[right] >= keyi)right--;Swap(&a[hole], &a[right]);hole = right;while (left < right && a[left] <= keyi)left++;Swap(&a[hole], &a[left]);hole = left;}Swap(&keyi, &a[hole]);keyi = left;return keyi; }

前后指针法

  • prev 指针初始化为数组的开始位置,cur 指针初始化为 prev 的下一位置。

  • cur 指针向前遍历数组,寻找小于或等于基准值的元素,而 prev 指针则跟随 cur 指针的移动,直到 cur 找到一个小于基准值的元素。

  • 一旦找到这样的元素,prevcur 指针之间的元素都会被交换,然后 cur 指针继续向前移动,直到找到下一个小于基准值的元素,或者到达数组的末尾。最后,基准值会被放置在 prev 指针当前的位置,完成一次排序

在这里插入图片描述

代码实现

int part3(int* a, int left, int right)
{int mid = GetmidNum(a, left, right);Swap(&a[left], &a[mid]);int keyi = left;int cur = left + 1;int prev = left;while (cur <= right){while (a[cur] < a[keyi] && ++prev != cur)Swap(&a[cur], &a[prev]);++cur;}Swap(&a[prev], &a[keyi]);keyi = prev;return keyi;
}

递归实现

以上都是递归方法,通过调用分区进行排序。

void QuickSort(int* a, int left, int right)
{if (left >= right)return;int key = part3(a, left, right);QuickSort(a, left, key - 1);QuickSort(a, key + 1, right);}

快速排序迭代实现(利用栈)参考:栈和队列

基本步骤
  1. 初始化栈:创建一个空栈,用于存储待排序子数组的起始和结束索引。
  2. 压栈:将整个数组的起始和结束索引作为一对入栈。
  3. 循环处理,在栈非空时,重复以下步骤:
    • 弹出一对索引(即栈顶元素)来指定当前要处理的子数组。
    • 选择子数组的一个元素作为枢轴(pivot)进行分区。
    • 进行分区操作,这会将子数组划分为比枢轴小的左侧部分和比枢轴大的

代码实现

void QuickSortNonR(int* a, int left, int right)
{ST st;STInit(&st);STpush(&st, left);STpush(&st, right);while (!STEmpty(&st)){int end = STTop(&st);STPop(&st);int begin = STTop(&st);STPop(&st);int keyi = part3(a, begin, end);if (keyi + 1 < end){STpush(&st, keyi + 1);STpush(&st, end);}if (begin < keyi - 1){STpush(&st, begin);STpush(&st, keyi - 1);}}STDestroy(&st);
}

快速排序的优化

优化角度从两个方面切入

  1. 在选择关键字的(基准值)时候,如果我们碰到了,有序数组,那么就会,减低排序效率。
    • 方法一:三数取中,即区三个关键字先进行排序,将中间数作为关键字,一般取左端右端和中间值。
    • 方法二:随机值。利用随机数生成。

三数取中代码实现

int GetmidNum(int* a, int begin, int end)
{int mid = (begin + end) / 2;if (a[begin] < a[mid]){if (a[mid] < a[end]){return mid;}else if(a[end]<a[begin]){return begin;}else{return end;}}else //a[begin]>a[mid]{if (a[begin] < a[end]){return begin;}else if (a[end] < a[mid]){return mid;}else{return end;}}

随机选 key(下标) 代码实现

srand(time(0));
int randi = left + (rand() % (right - left));
Swap(&a[left], &a[randi]);

快速排序复杂度分析

  • 在平均情况下,快速排序的时间复杂度为O(n log n),这是因为每次划分都能够将数组分成大致相等的两部分,从而实现高效排序。在最坏情况下,快速排序的时间复杂度为O(n^2)
  • 除了递归调用的栈空间之外,不需要额外的存储空间,因此空间复杂度是O(log n)。在最坏情况下,快速排序的时间复杂度可能是 O(n),这是因为在最坏情况下,递归堆栈空间可能会增长到线性级别。

根据上述描述,优化快速排序是必要的。

归并排序(Merge Sort)

在这里插入图片描述

归并排序的概念

归并排序(Merge Sort)是一种基于分治策略的排序算法,它将待排序的序列分为两个或以上的子序列,对这些子序列分别进行排序,然后再将它们合并为一个有序的序列。归并排序的基本思想是将待排序的序列看作是一系列长度为1的有序序列,然后将相邻的有序序列段两两归并,形成长度为2的有序序列,以此类推,最终得到一个长度为n的有序序列。

基本操作:

  • 分解:将序列每次折半划分,递归实现,直到子序列的大小为1。
  • 合并:将划分后的序列段两两合并后排序。在每次合并过程中,都是对两个有序的序列段进行合并,然后排序。这两个有序序列段分别为 R[low, mid]R[mid+1, high]。先将他们合并到一个局部的暂存数组 R2 中,合并完成后再将 R2 复制回 R 中。

代码实现(递归)

void _MergeSort(int* a, int* tmp, int begin, int end)
{if (begin >= end)return;int mid = (begin + end) / 2;_MergeSort(a, tmp, begin, mid - 1);_MergeSort(a, tmp, mid + 1, end);int begin1 = begin, end1 = mid;int begin2 = mid + 1, end2 = end;int i = begin;while (begin1 <= end1 && begin2 <= end2){if (a[begin1] > a[begin2]){tmp[i++] = a[begin2++];}else{tmp[i++] = a[begin1++];}}while (begin1 <= end1){tmp[i++] = a[begin1++];}while (begin2 <= end2){tmp[i++] = a[begin2++];}memcpy(a + begin, tmp + begin, sizeof(int) * (end - begin + 1));}void MergeSort(int* a, int n)
{int* tmp = (int*)malloc(sizeof(int) * n);if (tmp == NULL){perror("malloc fail");return;}_MergeSort(a, tmp, 0, n-1);free(tmp);
}

代码实现(迭代)

void MergeSortNonR(int* a, int n)
{int* tmp = (int*)malloc(sizeof(int) * n);if (tmp == NULL){perror("malloc fail");return;}int gap = 1;while (gap < n){for (int i = 0; i < n; i =2* gap){int begin1 = i, end1 = i + gap - 1;int begin2 = i + gap, end2 = i + 2 * gap - 1;int j = i;if (end1 >= n || begin2 >= n){break;}if (end2 >= n){end2 = n-1;}while (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2]){tmp[j++] = a[begin1++];}else{tmp[j++] = a[begin2++];}}while (begin1 <= end1){tmp[j++] = a[begin1++];}while (begin2 <= end2){tmp[j++] = a[begin2++];}memcpy(a + i, tmp + i, sizeof(int) * (end2 - i + 1));}gap *= 2;}free(tmp); 
}

归并排序复杂度分析

  • 时间复杂度是 O(n log n),其中 n 是待排序元素的数量。这个时间复杂度表明,归并排序的执行速度随着输入大小的增加而线性增加,但不会超过对数级的增长。
  • 空间复杂度为 O(n),在数据拷贝的时候malloc一个等大的数组。

总结

p[j++] = a[begin2++];
}
}

		while (begin1 <= end1){tmp[j++] = a[begin1++];}while (begin2 <= end2){tmp[j++] = a[begin2++];}memcpy(a + i, tmp + i, sizeof(int) * (end2 - i + 1));}gap *= 2;
}
free(tmp); 

}


## 归并排序复杂度分析* 时间复杂度是 O(n log n),其中 n 是待排序元素的数量。这个时间复杂度表明,归并排序的执行速度随着输入大小的增加而线性增加,但不会超过对数级的增长。
* 空间复杂度为 O(n),在数据拷贝的时候malloc一个等大的数组。# 总结![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/8d8d45e2fc8b4b0fa4747b27d20cd50c.png)

相关文章:

排序(堆排序、快速排序、归并排序)-->深度剖析(二)

前言 前面介绍了冒泡排序、选择排序、插入排序、希尔排序&#xff0c;作为排序中经常用到了算法&#xff0c;还有堆排序、快速排序、归并排序 堆排序&#xff08;HeaSort&#xff09; 堆排序的概念 堆排序是一种有效的排序算法&#xff0c;它利用了完全二叉树的特性。在C语言…...

七一建党节|热烈庆祝中国共产党成立103周年!

时光荏苒&#xff0c;岁月如梭。 在这热情似火的夏日&#xff0c; 我们迎来了中国共产党成立103周年的重要时刻。 这是一个值得全体中华儿女共同铭记和庆祝的日子&#xff0c; 也是激励我们不断前进的重要时刻。 103年&#xff0c; 风雨兼程&#xff0c;砥砺前行。 从嘉兴…...

Spring Boot应用知识梳理

一.简介 Spring Boot 是一个用于快速开发基于 Spring 框架的应用程序的工具。它简化了基于 Spring 的应用程序的配置和部署过程&#xff0c;提供了一种快速、便捷的方式来构建独立的、生产级别的 Spring 应用程序。 Spring Boot 的一些主要优点包括&#xff1a; 1. 简化配置…...

Spring中利用重载与静态分派

Spring中利用重载与静态分派 在Java和Spring框架中&#xff0c;重载&#xff08;Overloading&#xff09;和静态分派&#xff08;Static Dispatch&#xff09;是两个非常重要的概念&#xff0c;它们在处理类方法选择和执行过程中扮演着关键角色。本文旨在深入探讨Spring环境下…...

文本三剑客之awk:

文本三剑客awk&#xff1a; grep 查 sed 增删改查 主要&#xff1a;增改 awk 按行取列 awk awk默认的分隔符&#xff1a;空格&#xff0c;tab键&#xff0c;多个空格自动压缩为一个。 awk的工作原理&#xff1a;根据指令信息&#xff0c;逐行的读取文本内容&#xff0c;然…...

SpringSecurity-授权示例

用户基于权限进行授权 定义用户与权限 authorities()。 package com.cms.config;import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.security.core.userdetails.User; import…...

选哪个短剧系统源码好:全面评估与决策指南

在短剧内容创作和分享日益流行的今天&#xff0c;选择合适的短剧系统源码对于构建一个成功的短剧平台至关重要。短剧系统源码不仅关系到平台的稳定性和用户体验&#xff0c;还直接影响到内容创作者和观众的互动质量。本文将提供一份全面的评估指南&#xff0c;帮助您在众多短剧…...

AI时代的软件工程:挑战与改变

人工智能&#xff08;AI&#xff09;正以惊人的速度改变着我们的生活和工作方式。作为与AI关系最为密切的领域之一&#xff0c;软件工程正经历着深刻的转变。 1 软件工程的演变 软件工程的起源 软件工程&#xff08;Software Engineering&#xff09;是关于如何系统化、规范化地…...

Zuul介绍

Zuul 是 Netflix 开源的一个云平台网络层代理&#xff0c;它主要用于路由、负载均衡、中间件通信和动态路由。Zuul 本质上是一个基于 JVM 的网关&#xff0c;它提供了以下功能&#xff1a; 1.路由&#xff1a;Zuul 允许客户端和服务器之间的所有入站和出站请求通过一个中心化的…...

7-1作业

1.实验目的&#xff1a;完成字符收发 led.h #ifndef __GPIO_H__ #define __GPIO_H__#include "stm32mp1xx_rcc.h" #include "stm32mp1xx_gpio.h" #include "stm32mp1xx_uart.h"//RCC,GPIO,UART初始化 void init();//字符数据发送 void set_tt…...

ElasticSearch安装、配置详细步骤

一、环境及版本介绍 操作系统&#xff1a; Windows 10 软件版本&#xff1a; elasticsearch-7.17.22、kibana-7.17.22、IK-7.17.22 开发环境选择软件版本应提前考虑正式系统环境&#xff0c;否则会产生软件与服务器环境不兼容的问题出现&#xff0c;ElasticSearch与环境支持…...

【Mybatis 与 Spring】事务相关汇总

之前分享的几篇文章可以一起看&#xff0c;形成一个体系 【Mybatis】一级缓存与二级缓存源码分析与自定义二级缓存 【Spring】Spring事务相关源码分析 【Mybatis】Mybatis数据源与事务源码分析 Spring与Mybaitis融合 SpringManagedTransaction&#xff1a; org.mybatis.spri…...

Leetcode 2065. 最大化一张图中的路径价值(DFS / 最短路)

Leetcode 2065. 最大化一张图中的路径价值 暴力DFS 容易想到&#xff0c;从0点出发DFS&#xff0c;期间维护已经走过的距离&#xff08;时间&#xff09;和途径点的权值之和&#xff0c;若访问到0点则更新答案&#xff0c;若下一步的距离与已走过的距离和超出了maxTime&#…...

SeeSR: Towards Semantics-Aware Real-World Image Super-Resolution

CVPR2024 香港理工大学&OPPO&bytedancehttps://github.com/cswry/SeeSR?tabreadme-ov-file#-licensehttps://arxiv.org/pdf/2311.16518#page5.80 问题引入 因为有些LR退化情况比较严重&#xff0c;所以超分之后的结果会出现语义的不一致的情况&#xff0c;所以本文训…...

七月论文审稿GPT第5版:拿我司七月的早期paper-7方面review数据集微调LLama 3

前言 llama 3出来后&#xff0c;为了通过paper-review的数据集微调3&#xff0c;有以下各种方式 不用任何框架 工具 技术&#xff0c;直接微调原生的llama 3&#xff0c;毕竟也有8k长度了 效果不期望有多高&#xff0c;纯作为baseline通过PI&#xff0c;把llama 3的8K长度扩展…...

盘古5.0,靠什么去解最难的题?

文&#xff5c;周效敬 编&#xff5c;王一粟 当大模型的竞争开始拼落地&#xff0c;商业化在B端和C端都展开了自由生长。 在B端&#xff0c;借助云计算向千行万业扎根&#xff1b;在C端&#xff0c;通过软件App和智能终端快速迭代。 在华为&#xff0c;这家曾经以通信行业起…...

2.3章节Python中的数值类型

1.整型数值 2.浮点型数值 3.复数   Python中的数值类型清晰且丰富&#xff0c;主要分为以下几种类型&#xff0c;每种类型都有其特定的用途和特性。 一、整型数值 1.定义&#xff1a;整数类型用于表示整数值&#xff0c;如1、-5、100等。 2.特点&#xff1a; Python 3中的…...

每日Attention学习7——Frequency-Perception Module

模块出处 [link] [code] [ACM MM 23] Frequency Perception Network for Camouflaged Object Detection 模块名称 Frequency-Perception Module (FPM) 模块作用 获取频域信息&#xff0c;更好识别伪装对象 模块结构 模块代码 import torch import torch.nn as nn import to…...

【从0实现React18】 (五) 初探react mount流程 完成核心递归流程

更新流程的目的&#xff1a; 生成wip fiberNode树标记副作用flags 更新流程的步骤&#xff1a; 递&#xff1a;beginWork归&#xff1a;completeWork 在 上一节 &#xff0c;我们探讨了 React 应用在首次渲染或后续更新时的整体更新流程。在 Reconciler 工作流程中&#xff…...

0-30 VDC 稳压电源,电流控制 0.002-3 A

怎么运行的 首先&#xff0c;有一个次级绕组额定值为 24 V/3 A 的降压电源变压器&#xff0c;连接在电路输入点的引脚 1 和 2 上。&#xff08;电源输出的质量将直接影响与变压器的质量成正比&#xff09;。变压器次级绕组的交流电压经四个二极管D1-D4组成的电桥整流。桥输出端…...

nginx部署

配置阿里云yum源 安装如下编译工具 yum install -y gcc gcc-c autoconf automake make #安装使用nginx还得安装nginx所需的一些第三方系统库的支持&#xff0c;比如nginx的静态资源压缩功能所需的gzip lib库&#xff0c;nginx需要支持URL重写&#xff0c;所需的pcre库&…...

AI数据分析在体育中的应用:技术与实践

在现代体育竞技领域&#xff0c;"数据驱动"已不再是一个遥远的概念。尤其随着人工智能&#xff08;AI&#xff09;和大数据分析的不断成熟&#xff0c;从职业俱乐部到赛事直播平台&#xff0c;从运动员训练到球迷观赛体验&#xff0c;AI正以前所未有的方式渗透并改变…...

使用vue3+ts+input封装上传组件,上传文件显示文件图标

效果图&#xff1a; 代码 <template><div class"custom-file-upload"><div class"upload"><!-- 显示已选择的文件 --><div class"file-list"><div v-for"(item, index) in state.filsList" :key&q…...

免费批量去水印工具 - 针对文心一言生成图片

免费批量去水印工具 - 针对文心一言生成图片 工具介绍 这是一款免费的批量去水印工具&#xff0c;专门针对文心一言生成的图片进行处理。通过简单的操作&#xff0c;您可以快速去除图片中的水印。 下载链接 您可以通过以下网盘链接下载工具&#xff1a; 链接: https://pa…...

Vue入门到实战之第一篇【超基础】

Vue入门到实战之第一篇 学习路线1. Vue 概念1.1 Vue 是什么 2. 创建Vue实例&#xff0c;初始化渲染3. 插值表达式 {{ }}4. Vue响应式特性5. 开发者工具 学习路线 1. Vue 概念 1.1 Vue 是什么 概念&#xff1a; Vue是一个用于 构建用户界面1 的 渐进式2 框架3 1&#xff1a;基…...

springboot2.x升级springboot3.x

springboot2.x升级springboot3.x 背景升级jdk版本为17以上springboot版本修改javax包更新mybatis-plus升级swagger升级springdocspringdoc配置 背景 当前项目是springboot2.5.9版本的springbootmybatis-plus项目&#xff0c;需要升级到springboot3.5.0项目。 升级jdk版本为17…...

Qt Quick Test模块功能及架构

Qt Quick Test 是专门为测试 QML 应用程序设计的模块&#xff0c;在 Qt 6.0 中得到了显著增强。 一、主要功能/使用方法 核心功能概述 QML 单元测试框架 提供完整的 QML 测试环境 支持测试用例组织和执行 包含 QML 断言函数和测试结果收集 测试类型支持 组件功能测试 用…...

LLMs 系列科普文(6)

截止到目前&#xff0c;我们从模型预训练阶段的数据准备讲起&#xff0c;谈到了 Tokenizer、模型的结构、模型的训练&#xff0c;基础模型、预训练阶段、后训练阶段等&#xff0c;这里存在大量的术语或名词&#xff0c;也有一些奇奇怪怪或者说是看起来乱七八糟的内容。这期间跳…...

SOC-ESP32S3部分:36-适配自己的板卡

飞书文档https://x509p6c8to.feishu.cn/wiki/RP4UwPrsKi4xuQkKLAAcKxD3n1b 如果你自己画了PCB板&#xff0c;需要把自己绘制的板卡配置小智AI工程&#xff0c;可以参考此文档。 下载源码 克隆或下载源码到本地&#xff0c;这里以1.5.5为例&#xff0c;大家可以自行修改其它版…...

纳米AI搜索与百度AI搜、豆包的核心差异解析

一、技术定位与设计目标 1、纳米AI搜索&#xff1a;轻量化边缘计算导向
专注于实时数据处理与资源受限环境下的高效响应&#xff0c;通过算法优化和模型压缩技术&#xff0c;实现在物联网设备、智能终端等低功耗场景的本地化部署。其核心优势在于减少云端依赖&#xff0c;保障…...