【AIGC评测体系】大模型评测指标集
大模型评测指标集
- (☆)SuperCLUE
- (1)SuperCLUE-V(中文原生多模态理解测评基准)
- (2)SuperCLUE-Auto(汽车大模型测评基准)
- (3)AIGVBench-T2V(文生视频基准测评)
- (4)SuperCLUE-Coder(代码助手测评基准)
- (5)SuperCLUE-RAG(中文原生检索增强生成测评基准)
- (6)SuperCLUE-Agent(Agent能力测评基准)
- (7)SuperCLUE-Image(中文原生文生图测评基准)
(☆)SuperCLUE
- CLUE官网: https://www.CLUEBenchmarks.com
- SuperCLUE排行榜网站: https://www.superclueai.com
- Github地址: https://github.com/CLUEbenchmark/SuperCLUE
(1)SuperCLUE-V(中文原生多模态理解测评基准)
- 推荐文章: SuperCLUE-V: 中文原生多模态理解测评基准
- 项目地址: https://github.com/CLUEbenchmark/SuperCLUE-V
(2)SuperCLUE-Auto(汽车大模型测评基准)
- 推荐文章: SuperCLUE-Auto:首个汽车行业中文大模型测评基准发布
- 项目地址: https://github.com/CLUEbenchmark/SuperCLUE-auto
(3)AIGVBench-T2V(文生视频基准测评)
- 推荐文章: AIGVBench文生视频测评首期结果公布,1000个AI视频对比,最高72.9分,Luma仅第3
- AIGVBench登录页: www.AIGVBench.com
(4)SuperCLUE-Coder(代码助手测评基准)
- 推荐文章: 代码助手测评」启动,SC-Coder测评方案公布
(5)SuperCLUE-RAG(中文原生检索增强生成测评基准)
- 推荐文章: 中文RAG检索增强生成榜单出炉!仅有一家刚刚及格
- 项目地址: https://github.com/CLUEbenchmark/SuperCLUE-RAG
(6)SuperCLUE-Agent(Agent能力测评基准)
- 推荐文章: SuperCLUE-Agent: Agent智能体中文原生任务能力测评基准
- 项目地址: https://github.com/CLUEbenchmark/SuperCLUE-Agent
(7)SuperCLUE-Image(中文原生文生图测评基准)
- 推荐文章: 文生图大模型基准测评首期榜单公布,DALL-E 3取得最高76.94分
- 项目地址: https://github.com/CLUEbenchmark/SuperCLUE-Image
相关文章:
【AIGC评测体系】大模型评测指标集
大模型评测指标集 (☆)SuperCLUE(1)SuperCLUE-V(中文原生多模态理解测评基准)(2)SuperCLUE-Auto(汽车大模型测评基准)(3)AIGVBench-T2…...
工厂模式之简单工厂模式
文章目录 工厂模式工厂模式分为工厂模式的角色简单工厂模式案例代码定义一个父类,三个子类定义简单工厂客户端使用输出结果 工厂模式 工厂模式属于创造型的模式,用于创建对象。 工厂模式分为 简单工厂模式:定义一个简单工厂类,根…...
2.(vue3.x+vite)调用iframe的方法(vue编码)
1、效果预览 2.编写代码 (1)主页面 <template><div><button @click="sendMessage">调用iframe,并发送信息...
实战项目——用Java实现图书管理系统
前言 首先既然是管理系统,那咱们就要实现以下这几个功能了--> 分析 1.首先是用户分为两种,一个是管理员,另一个是普通用户,既如此,可以定义一个用户类(user),在定义管理员类&am…...
利用DeepFlow解决APISIX故障诊断中的方向偏差问题
概要:随着APISIX作为IT应用系统入口的普及,其故障定位能力的不足导致了在业务故障诊断中,APISIX常常成为首要的“嫌疑对象”。这不仅导致了“兴师动众”式的资源投入,还可能使诊断方向“背道而驰”,从而导致业务故障“…...
sqlalchemy获取数据条数
1、sqlalchemy获取数据条数 在SQLAlchemy中,你可以使用count()函数来获取数据表中的记录条数。 from sqlalchemy import create_engine, MetaData, Table# 数据库连接字符串 DATABASE_URI = dialect+driver://username:password@host:port/database# 创建引擎 engine = crea…...
SpringBoot的自动配置核心原理及拓展点
Spring Boot 的核心原理几个关键点 约定优于配置: Spring Boot 遵循约定优于配置的理念,通过预定义的约定,大大简化了 Spring 应用程序的配置和部署。例如,它自动配置了许多常见的开发任务(如数据库连接、Web 服务器配…...
用随机森林算法进行的一次故障预测
本案例将带大家使用一份开源的S.M.A.R.T.数据集和机器学习中的随机森林算法,来训练一个硬盘故障预测模型,并测试效果。 实验目标 掌握使用机器学习方法训练模型的基本流程;掌握使用pandas做数据分析的基本方法;掌握使用scikit-l…...
24位DAC转换的FPGA设计及将其封装成自定义IP核的方法
在vivado设计中,为了方便的使用Block Desgin进行设计,可以使用vivado软件把自己编写的代码封装成IP核,封装后的IP核和原来的代码具有相同的功能。本文以实现24位DA转换(含并串转换,使用的数模转换器为CL4660)为例,介绍VIVADO封装IP核的方法及调用方法,以及DAC转换的详细…...
【大模型LLM面试合集】大语言模型基础_llm概念
1.llm概念 1.目前 主流的开源模型体系 有哪些? 目前主流的开源LLM(语言模型)模型体系包括以下几个: GPT(Generative Pre-trained Transformer)系列:由OpenAI发布的一系列基于Transformer架构…...
Qt时间日期处理与定时器使用总结
一、日期时间数据 1.QTime 用于存储和操作时间数据的类,其中包括小时(h)、分钟(m)、秒(s)、毫秒(ms)。函数定义如下: //注:秒(s)和毫秒(ms)有默认值0 QTime::QTime(int h, int m, int s 0, int ms 0) 若无须初始化时间数据,可…...
数据结构——Hash Map
1. Hash Map简介 Hash Map是一种基于键值对的数据结构,通过散列函数将键映射到存储位置,实现快速的数据查找和存储。它可以在常数时间内完成查找、插入和删除操作,因此在需要频繁进行这些操作时非常高效。 2. Hash Map的定义 散列表ÿ…...
剪画小程序:视频剪辑-视频播放倍数的调整与应用
在这个快节奏的时代,时间变得越来越宝贵,而视频倍数播放功能就像是我们的时间管理小助手,为我们的视频观看带来了极大的便利。你是否好奇它到底能在哪些地方发挥作用呢?让我们一起来看看! 只要使用小程序【剪画】的里…...
使用 Java Swing 和 XChart 创建多种图表
在现代应用程序开发中,数据可视化是一个关键部分。本文将介绍如何使用 Java Swing 和 XChart 库创建各种类型的图表。XChart 是一个轻量级的图表库,支持多种类型的图表,非常适合在 Java 应用中进行快速的图表绘制。 1、环境配置 在开始之前&…...
信息系统运维管理:实践与发展
信息系统运维管理:实践与发展 信息系统运维管理在现代企业中扮演着至关重要的角色,确保信息系统的高效、安全和稳定运行。本文结合《信息系统运维管理》文档内容,探讨了服务设计阶段、服务转换阶段、委托系统维护管理三个主要章节࿰…...
html+js+css登录注册界面
拥有向服务器发送登录或注册数据并接收返回数据的功能 点赞关注 界面 源代码 <!DOCTYPE html> <html lang"en"> <head> <meta charset"UTF-8"> <title>Login and Registration Form</title> <style> * …...
英伟达(NVIDIA)数据中心GPU介绍
英伟达(NVIDIA)数据中心GPU按性能由高到低排行: 1. NVIDIA H100 架构:Hopper 核心数量:18352 CUDA Cores, 1456 Tensor Cores 显存:80 GB HBM3 峰值性能: 单精度(FP32)…...
Leetcode 3202. Find the Maximum Length of Valid Subsequence II
Leetcode 3202. Find the Maximum Length of Valid Subsequence II 1. 解题思路2. 代码实现 题目链接:3202. Find the Maximum Length of Valid Subsequence II 1. 解题思路 这一题的话是上一题3201. Find the Maximum Length of Valid Subsequence I的升级版&am…...
通过Spring Boot结合实时流媒体技术对考试过程进行实时监控
本章将深入探讨考试系统中常见的复杂技术问题,并提供基于Spring Boot 3.x的解决方案。涵盖屏幕切换检测与防护、接打电话识别处理、行为监控摄像头使用、网络不稳定应对等,每篇文章详细剖析问题并提供实际案例与代码示例,帮助开发者应对挑战&…...
智能扫地机器人避障与防跌落问题解决方案
智能扫地机器人出现避障与防跌落问题时,可以通过以下几种方式来解决: 一、避障问题的解决方案 1.升级避障技术: ① 激光雷达避障:激光雷达通过发射和接收激光信号来判断与障碍物的距离,具有延迟低、效果稳定、准确度…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...
ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...
如何在网页里填写 PDF 表格?
有时候,你可能希望用户能在你的网站上填写 PDF 表单。然而,这件事并不简单,因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件,但原生并不支持编辑或填写它们。更糟的是,如果你想收集表单数据ÿ…...
HubSpot推出与ChatGPT的深度集成引发兴奋与担忧
上周三,HubSpot宣布已构建与ChatGPT的深度集成,这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋,但同时也存在一些关于数据安全的担忧。 许多网络声音声称,这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...
Ubuntu Cursor升级成v1.0
0. 当前版本低 使用当前 Cursor v0.50时 GitHub Copilot Chat 打不开,快捷键也不好用,当看到 Cursor 升级后,还是蛮高兴的 1. 下载 Cursor 下载地址:https://www.cursor.com/cn/downloads 点击下载 Linux (x64) ,…...
LOOI机器人的技术实现解析:从手势识别到边缘检测
LOOI机器人作为一款创新的AI硬件产品,通过将智能手机转变为具有情感交互能力的桌面机器人,展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家,我将全面解析LOOI的技术实现架构,特别是其手势识别、物体识别和环境…...
AD学习(3)
1 PCB封装元素组成及简单的PCB封装创建 封装的组成部分: (1)PCB焊盘:表层的铜 ,top层的铜 (2)管脚序号:用来关联原理图中的管脚的序号,原理图的序号需要和PCB封装一一…...
算法—栈系列
一:删除字符串中的所有相邻重复项 class Solution { public:string removeDuplicates(string s) {stack<char> st;for(int i 0; i < s.size(); i){char target s[i];if(!st.empty() && target st.top())st.pop();elsest.push(s[i]);}string ret…...
用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法
用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法 大家好,我是Echo_Wish。最近刷短视频、看直播,有没有发现,越来越多的应用都开始“懂你”了——它们能感知你的情绪,推荐更合适的内容,甚至帮客服识别用户情绪,提升服务体验。这背后,神经网络在悄悄发力,撑起…...
