当前位置: 首页 > news >正文

DP:背包问题----0/1背包问题

文章目录

  • 💗背包问题
    • 💛背包问题的变体
    • 🧡0/1 背包问题的数学定义
    • 💚解决背包问题的方法
    • 💙例子
  • 💗解决背包问题的一般步骤?
  • 💗例题
  • 💗总结

在这里插入图片描述

❤️❤️❤️❤️❤️博客主页:lyyyyrics❤️❤️❤️❤️❤️
在这里插入图片描述

💗背包问题

背包问题(Knapsack Problem)是一类经典的组合优化问题,在计算机科学和数学中有广泛应用。其基本问题是:

  • 输入:给定一个容量为 W W W 的背包和 n n n 个物品,每个物品 i i i 有一个重量 w i w_i wi 和一个价值 v i v_i vi
  • 目标:选择若干个物品放入背包,使得总重量不超过背包的容量 W W W,并且总价值最大化。

💛背包问题的变体

  1. 0/1 背包问题:每个物品只能选择一次,即要么选中(1)要么不选(0)。
  2. 分数背包问题:每个物品可以分割,即可以选择物品的一部分。
  3. 多重背包问题:每个物品有多个副本,可以选择多个相同的物品。
  4. 多维背包问题:背包有多个限制条件,例如容量和体积等。

🧡0/1 背包问题的数学定义

目标函数:
maximize ∑ i = 1 n c i ⋅ x i \text{maximize} \sum_{i=1}^{n} c_i \cdot x_i maximizei=1ncixi
其中, n n n 表示物品的数量, c i c_i ci 表示物品 i i i 的价值。

约束条件:
∑ i = 1 n w i ⋅ x i ≤ C \sum_{i=1}^{n} w_i \cdot x_i \leq C i=1nwixiC
其中, w i w_i wi 表示物品 i i i 的重量, C C C 表示背包的容量。

其它约束条件:
x i ∈ { 0 , 1 } x_i \in \{0,1\} xi{0,1}
i = 1 , 2 , 3 , … , n i = 1,2,3,\ldots,n i=1,2,3,,n
其中, x i x_i xi 表示物品 i i i 是否被选中。

💚解决背包问题的方法

解决背包问题的方法有很多,包括动态规划、分支定界法、贪心算法(适用于分数背包问题)以及各种近似算法和启发式算法等。

💙例子

假设有一个背包容量为 50 的背包,有以下物品:

物品重量价值
11060
220100
330120

目标是选择物品使得总重量不超过 50 且总价值最大化。在这个例子中,最佳选择是选取物品 2 和物品 3,总重量为 50,总价值为 220。

💗解决背包问题的一般步骤?

背包问题是一个经典的优化问题,可以通过动态规划算法来解决。下面是解决背包问题的一般步骤:

  1. 确定问题的约束条件:背包的容量限制和物品的重量和价值。

  2. 定义状态:将问题拆解为多个子问题,定义状态为背包的容量和可选择的物品。

  3. 定义状态转移方程:根据子问题的定义,确定状态之间的关系。例如,对于背包问题,可以定义状态转移方程为f(i,j),表示在前i个物品中选择,背包容量为j时,可以获得的最大价值。则可以得到状态转移方程:f(i,j) = max(f(i-1,j), f(i-1,j-w[i])+v[i]),其中w[i]和v[i]分别表示第i个物品的重量和价值。

  4. 确定初始条件:确定边界条件,即背包容量为0时,价值为0。

  5. 通过动态规划算法计算最优解:根据状态转移方程和初始条件,利用循环或递归的方式计算最优解。

  6. 回溯最优解:根据计算得到的最优解,可以通过回溯的方式确定选择了哪些物品放入背包中,从而得到最终的解。

需要注意的是,背包问题的解决方法还包括贪心算法、分支界限算法等。具体选择哪种方法取决于问题的约束条件和需要优化的目标。

💗例题

题目链接
题目:

在这里插入图片描述

样例输出和输入:

在这里插入图片描述

这道题并不是leetcode的那种接口的模式,而是ACM模式,我们需要进行完整的输入和输出,我们先分析第一个样例:

0123
容量241
价值1054

第一个问题是给定一个背包容量,求出当背包的容量不用装满时的最大价值,意思就是我们选出的物品的总的容量可以小于背包的容量,也可以等于背包的容量,这时,我们可以第一个物品和三个物品的价值是最大的。
总价值为14,
第二个问题是我们必须将 背包容量给塞满,求塞满的状态的物品的最大价值,这种情况下有可能是没有结果的,因为无法选出能将背包塞满的组合 ,所以这时候就输出零。但是这个例子是可以输出结果的,塞满的情况应该是第二个物品和第三个物品,总价值是9,所以最后输出14和9。

算法原理:
状态表示:dp[i][j]-----表示选到第i个位置时的所有选法中的不超过总容积j的最大价值。
状态转移方程:在这里插入图片描述
这是不把背包填满的情况下的状态转移方程,还有一个问题就是需要将背包填满。
在这里插入图片描述
所以这里如果要用到前一个状态的话,应该判断一下前一个状态是否是-1,如果前一个状态是-1的话,就表示这种情况根本不存在 ,所以不能选择这种状态在这里插入图片描述

初始化:第一个问题的初始化只需要将dp表初始化为0,第二个问题的初始化上面已经讨论过了。
填表顺序:也是按照从左上角到右下角,依次填表。
返回值:返回dp[n][V]
代码展示:

#include <cstring>
#include <iostream>
#include<string>
using namespace std;//数据范围
const int N = 1010;
//n个数据,V为背包的总容量,v表示单个物品的所占容积,w表示单个物品所含的价值
int n, V, v[N], w[N];
//i表示第i个位置,j表示总的容积
int dp[N][N];int main()
{//输入总数据,和总容积cin >> n >> V;for (int i = 1;i <= n;i++){cin >> v[i] >> w[i];}//解决第一问for (int i = 1;i <= n;i++){//j表示容量for (int j = 1;j <= V;j++){//不选的情况dp[i][j] = dp[i - 1][j];//如果能选,则和之前不选的情况求一个maxif (j >= v[i])dp[i][j] = max(dp[i][j], dp[i - 1][j - v[i]] + w[i]);}}//输出最后一个dp状态cout << dp[n][V] << endl;//重置dp表,将表中数据重置为0memset(dp, 0, sizeof dp);//单独初始化第一排的后面的位置,因为如果没有任何物品根本不可能有价值,所以初始化为-1for (int i = 1;i <= V;i++){//初始化不存在dp的位置dp[0][i] = -1;}for (int i = 1;i <= n;i++){//j表示容量for (int j = 1;j <= V;j++){//可以不选dp[i][j] = dp[i - 1][j];//如果要选择当前位置的话需要考虑前一个状态是否是-1,选不到的情况 if (j >= v[i] && dp[i - 1][j - v[i]] != -1)dp[i][j] = max(dp[i][j], dp[i - 1][j - v[i]] + w[i]);}}//如果不存在选满的情况,直接返回0,否则返回dp[n][V]位置的值cout << (dp[n][V] == -1 ? 0 : dp[n][V]) << endl;return 0;
}

代码优化:
可以利用滚动数组进行优化:

#include <cstring>
#include <iostream>
#include<string>
using namespace std;//数据范围
const int N = 1010;
//n个数据,V为背包的总容量,v表示单个物品的所占容积,w表示单个物品所含的价值
int n, V, v[N], w[N];
//i表示第i个位置,j表示总的容积
int dp[N];int main()
{//输入总数据,和总容积cin >> n >> V;for (int i = 1;i <= n;i++)cin >> v[i] >> w[i];//解决第一问for (int i = 1;i <= n;i++)//j表示容量for (int j = V;j >= v[i];j--)//修改遍历顺序//如果能选,则和之前不选的情况求一个maxdp[j] = max(dp[j], dp[j - v[i]] + w[i]);//输出最后一个dp状态cout << dp[V] << endl;//重置dp表,将表中数据重置为0memset(dp, 0, sizeof dp);//单独初始化第一排的后面的位置,因为如果没有任何物品根本不可能有价值,所以初始化为-1for (int i = 1;i <= V;i++)//初始化不存在dp的位置dp[i] = -1;for (int i = 1;i <= n;i++)//j表示容量for (int j = V;j >= v[i];j--)//修改遍历顺序//如果能选,则和之前不选的情况求一个maxif(dp[j-v[i]]!=-1)dp[j] = max(dp[j], dp[j - v[i]] + w[i]);//如果不存在选满的情况,直接返回0,否则返回dp[n][V]位置的值cout << (dp[V] == -1 ? 0 : dp[V]) << endl;return 0;
}

运行结果:
在这里插入图片描述

💗总结

通过对0/1背包问题的分析和动态规划解法的详细讲解,我们可以看到这种经典问题在算法设计中的重要性。0/1背包问题不仅是许多实际应用的基础,也是理解和掌握动态规划思想的一个重要实例。

在解决0/1背包问题时,关键在于构建状态转移方程并合理使用空间和时间资源。通过递归和迭代的方法,我们能更好地理解背包问题的解法,优化算法效率,并提升解决复杂问题的能力。

希望这篇博客能帮助你理解0/1背包问题的基本原理和解法,同时激发你对动态规划和算法设计的进一步兴趣和探索。未来的学习中,不妨尝试更多的变种背包问题和动态规划问题,以不断提升自己的算法技能和编程水平。

相关文章:

DP:背包问题----0/1背包问题

文章目录 &#x1f497;背包问题&#x1f49b;背包问题的变体&#x1f9e1;0/1 背包问题的数学定义&#x1f49a;解决背包问题的方法&#x1f499;例子 &#x1f497;解决背包问题的一般步骤&#xff1f;&#x1f497;例题&#x1f497;总结 ❤️❤️❤️❤️❤️博客主页&…...

React antd umi 监听当前页面离开,在菜单栏提示操作

需求是我这里有个页面&#xff0c;离开当前页面之后&#xff0c;需要在菜单栏显示个提示&#xff0c;也就是Tour const [unblock, setUnblock] useState<() > void>(() > () > {});const [next, setNext] useState();useEffect(() > {const unblockHandler…...

在 Windows PowerShell 中模拟 Unix/Linux 的 touch 命令

在 Unix 或 Linux 系统中&#xff0c;touch 命令被广泛用于创建新文件或更新现有文件的时间戳。不过&#xff0c;在 Windows 系统中&#xff0c;尤其是在 PowerShell 环境下&#xff0c;并没有内置的 touch 命令。这篇博客将指导你如何在 Windows PowerShell 中模拟 touch 命令…...

鸿蒙NEXT

[中国&#xff0c;东莞&#xff0c;2024年6月24日] 华为开发者大会&#xff08;HDC&#xff09;正式开幕&#xff0c;带来全新的 HarmonyOS NEXT、盘古大模型5.0等最创新成果&#xff0c;持续为消费者和开发者带来创新体验。 HarmonyOS NEXT 鸿蒙生态 星河璀璨 鸿蒙生态设备数…...

VUE3-Elementplus-form表单-笔记

1. 结构相关 el-row表示一行&#xff0c;一行分成24份 el-col表示列 (1) :span"12" 代表在一行中&#xff0c;占12份 (50%) (2) :span"6" 表示在一行中&#xff0c;占6份 (25%) (3) :offset"3" 代表在一行中&#xff0c;左侧margin份数 el…...

Analyze an ORA-12801分析并行 parallel 12801 实际原因

"ORA-06512: at "PKG_P_DATA", line 19639 ORA-06512: at "PKG_P_DATA", line 19595 ORA-06512: at "PKG_P_DATA", line 14471-JOB 调用 -ORA-12801: error signaled in parallel query server P009, instance rac2:dwh2 (2) Error: ORA-12…...

高级运维工程师讲述银河麒麟V10SP1服务器加固收回权限/tmp命令引起生产mysql数据库事故实战

高级运维工程师讲述银河麒麟V10SP1服务器加固收回权限/tmp命令引起生产MySql数据库事故实战 一、前言 作为运维工程师经常会对生产服务器进行安全漏洞加固&#xff0c;一般服务厂商、或者甲方信息安全中心提供一些安全的shell脚本&#xff0c;一般这种shell脚本都是收回权限&…...

昇思25天学习打卡营第09天|sea_fish

打开第九天&#xff0c;本次学习的内容为保存与加载&#xff0c;记录学习的过程。本次的内容少而且简单。 在训练网络模型的过程中&#xff0c;实际上我们希望保存中间和最后的结果&#xff0c;用于微调&#xff08;fine-tune&#xff09;和后续的模型推理与部署&#xff0c;因…...

flutter开发实战-Charles抓包设置,dio网络代理

flutter开发实战-Charles抓包设置 在开发过程中抓包&#xff0c;可以看到请求参数等数据&#xff0c;方便分析问题。flutter上使用Charles抓包设置。dio需要设置网络代理。 一、dio设置网络代理 在调试模式下需要抓包调试&#xff0c;所以需要使用代理&#xff0c;并且仅用H…...

Elasticsearch:Runtime fields - 运行时字段(二)

这是继上一篇文章 “Elasticsearch&#xff1a;Runtime fields - 运行时字段&#xff08;一&#xff09;” 的续篇。 在查询时覆盖字段值 如果你创建的运行时字段与映射中已存在的字段同名&#xff0c;则运行时字段会隐藏映射字段。在查询时&#xff0c;Elasticsearch 会评估运…...

Python正则表达式的入门用法(上)

Python正则表达式是使用re模块来进行操作的。re模块提供了一组函数&#xff0c;用于进行字符串的匹配和查找操作。 下面是Python中使用正则表达式的一些常用函数&#xff1a; re.search(pattern, string)&#xff1a;在字符串中查找并返回第一个匹配的对象。 re.match(patte…...

Audio Processing Graphs 管理 Audio Units

Audio Processing Graphs 管理 Audio Units Audio Processing Graphs 管理 Audio UnitsAudio Processing Graph 拥有精确的 I/O UnitAudio Processing Graph 提供线程安全通过 graph "pull" 音频流 Audio Processing Graphs 管理 Audio Units audio processing grap…...

欧盟,又出了新规-通用充电器新规通用充電器的 RED 修正案如何办理?

欧盟&#xff0c;又出了新规-通用充电器新规通用充電器的 RED 修正案如何办理&#xff1f; 欧盟新规委员会发布《通用充电器指令》指南通用充電器的 RED 修正案办理流程&#xff1a; 2024年5月7日&#xff0c;欧盟委员会发布《通用充电器指令》指南&#xff0c;修订了《无线…...

thinkphp6/8 验证码

html和后台验证代码按官方来操作 ThinkPHP官方手册 注意&#xff1a; 如果验证一直失败&#xff0c;看看Session是否开启&#xff0c; 打印dump(session_status());结果2为正确的&#xff0c; PHP_SESSION_DISABLED: Session功能被禁用&#xff08;返回值为0&#xff09;。…...

Ubuntu 22.04 LTS 上安装 MySQL8.0.23(在线安装)

目录 在线安装MySQL 步骤1&#xff1a;更新软件包列表 步骤2&#xff1a;安装MySQL服务器 步骤3&#xff1a;启动MySQL服务 步骤4&#xff1a;检查MySQL状态 步骤5&#xff1a;修改密码、权限 在线安装MySQL 步骤1&#xff1a;更新软件包列表 在进行任何软件安装之前&a…...

如何选择优质模型?SD3性能究竟如何?

遇到难题不要怕&#xff01;厚德提问大佬答&#xff01; 厚德提问大佬答12 厚德提问大佬答第十二期 你是否对AI绘画感兴趣却无从下手&#xff1f;是否有很多疑问却苦于没有大佬解答带你飞&#xff1f;从此刻开始这些问题都将迎刃而解&#xff01;你感兴趣的话题&#xff0c;厚德…...

Linux上脚本备份数据库(升级版)

直接上代码&#xff1a; #!/bin/bash# 配置部分 mysql_user"root" mysql_host"localhost" mysql_port"3306" mysql_charset"utf8mb4" mysql_defaults_file"/home/mysql/mysql_back/.my.cnf"backup_base_dir"/mnt/sdd/…...

【深度解析】滑动窗口:目标检测算法的基石

标题&#xff1a;【深度解析】滑动窗口&#xff1a;目标检测算法的基石 目标检测是计算机视觉领域的一个核心任务&#xff0c;旨在识别图像中所有感兴趣的目标&#xff0c;并确定它们的位置和大小。滑动窗口方法作为目标检测中的一种传统技术&#xff0c;虽然在深度学习时代逐…...

约束:对于数据的限制

主键约束 主键约束&#xff1a;唯一约束非空约束&#xff0c;该字段上的数据不能重复且不能为null 注意&#xff1a;一张表必须有且只有一个主键 添加主键约束 -- 方式一(推荐) CREATE TABLE user(username VARCHAR(32) PRIMARY KEY,password VARCHAR(32),nick_name VARCHAR(3…...

【总线】AXI4第七课时:AXI的额外的控制信息(PROT和CACHE)

大家好,欢迎来到今天的总线学习时间!如果你对电子设计、特别是FPGA和SoC设计感兴趣&#xff0c;那你绝对不能错过我们今天的主角——AXI4总线。作为ARM公司AMBA总线家族中的佼佼者&#xff0c;AXI4以其高性能和高度可扩展性&#xff0c;成为了现代电子系统中不可或缺的通信桥梁…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句&#xff0c;它能够让用户直接在浏览器内练习SQL的语法&#xff0c;不需要安装任何软件。 链接如下&#xff1a; sqliteviz 注意&#xff1a; 在转写SQL语法时&#xff0c;关键字之间有一个特定的顺序&#xff0c;这个顺序会影响到…...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建

华为云FlexusDeepSeek征文&#xff5c;DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色&#xff0c;华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型&#xff0c;能助力我们轻松驾驭 DeepSeek-V3/R1&#xff0c;本文中将分享如何…...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计&#xff0c;聪明的码友立马就知道了&#xff0c;该到数据访问模块了&#xff0c;要不就这俩玩个6啊&#xff0c;查库势在必行&#xff0c;至此&#xff0c;它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据&#xff08;数据库、No…...

关于easyexcel动态下拉选问题处理

前些日子突然碰到一个问题&#xff0c;说是客户的导入文件模版想支持部分导入内容的下拉选&#xff0c;于是我就找了easyexcel官网寻找解决方案&#xff0c;并没有找到合适的方案&#xff0c;没办法只能自己动手并分享出来&#xff0c;针对Java生成Excel下拉菜单时因选项过多导…...

MFE(微前端) Module Federation:Webpack.config.js文件中每个属性的含义解释

以Module Federation 插件详为例&#xff0c;Webpack.config.js它可能的配置和含义如下&#xff1a; 前言 Module Federation 的Webpack.config.js核心配置包括&#xff1a; name filename&#xff08;定义应用标识&#xff09; remotes&#xff08;引用远程模块&#xff0…...

水泥厂自动化升级利器:Devicenet转Modbus rtu协议转换网关

在水泥厂的生产流程中&#xff0c;工业自动化网关起着至关重要的作用&#xff0c;尤其是JH-DVN-RTU疆鸿智能Devicenet转Modbus rtu协议转换网关&#xff0c;为水泥厂实现高效生产与精准控制提供了有力支持。 水泥厂设备众多&#xff0c;其中不少设备采用Devicenet协议。Devicen…...

flow_controllers

关键点&#xff1a; 流控制器类型&#xff1a; 同步&#xff08;Sync&#xff09;&#xff1a;发布操作会阻塞&#xff0c;直到数据被确认发送。异步&#xff08;Async&#xff09;&#xff1a;发布操作非阻塞&#xff0c;数据发送由后台线程处理。纯同步&#xff08;PureSync…...

向量几何的二元性:叉乘模长与内积投影的深层联系

在数学与物理的空间世界中&#xff0c;向量运算构成了理解几何结构的基石。叉乘&#xff08;外积&#xff09;与点积&#xff08;内积&#xff09;作为向量代数的两大支柱&#xff0c;表面上呈现出截然不同的几何意义与代数形式&#xff0c;却在深层次上揭示了向量间相互作用的…...