当前位置: 首页 > news >正文

Games101学习笔记 Lecture16 Ray Tracing 4 (Monte Carlo Path Tracing)

Lecture16 Ray Tracing 4 (Monte Carlo Path Tracing

  • 一、蒙特卡洛积分 Monte Carlo Integration
  • 二、路径追踪 Path tracing
    • 1.Whitted-Style Ray Tracing's Problems
    • 2.只考虑直接光照时
    • 3.考虑全局光照
      • ①考虑物体的反射光
      • ②俄罗斯轮盘赌 RR (得到正确shade函数)
      • ③射线生成(追踪足够多的path)
      • ④对光源进行采样
        • 推导
      • ⑤结束

一、蒙特卡洛积分 Monte Carlo Integration

  • 为什么:用于解决难以求解的积分问题
  • 是什么/怎么办:在x轴上随机采样积分,而不是均匀采样
    在这里插入图片描述
  • 函数 f(x) 在区间 [a,b] 上的定积分 ∫ a b f ( x ) d x \int_{a}^{b}f(x)dx abf(x)dx
  • 随机变量 X i ∼ p ( x ) X_{i} \sim p(x) Xip(x)
  • 得到蒙特卡洛积分为 F N = 1 N ∑ i = 1 N f ( X i ) p ( X i ) F_{N} = \frac{1}{N} \sum_{i=1}^{N} \frac{f(X_{i})}{p(X_{i})} FN=N1i=1Np(Xi)f(Xi)

二、路径追踪 Path tracing

1.Whitted-Style Ray Tracing’s Problems

  • 只处理镜面或者透明物体的反射和折射,在漫反射时就停止了,忽略了物体之间的反射
  • 在glossy金属材质时,不应该全部都反射
  • 但是 渲染方程是对的
    • L r ( p , ω r ) L_{r}(p, ω_{r}) Lr(p,ωr) = L e ( p , ω o ) L_{e}( p, ω_{o}) Le(p,ωo) + ∫ Ω + L r ( p , − ω i ) f r ( p , ω i , ω r ) ( n ⋅ ω i ) d w i \int_{Ω^+}^{} L_{r}( p , -ω_{i}) f_{r}( p , ω_{i} ,ω_{r}) ( n \cdot ω_{i})dw_{i} Ω+Lr(p,ωi)fr(p,ωi,ωr)(nωi)dwi

2.只考虑直接光照时

  • L o ( p , ω o ) L_{o}(p, ω_{o}) Lo(p,ωo) = ∫ Ω + L i ( p , ω i ) f r ( p , ω i , ω o ) ( n ⋅ ω i ) d w i \int_{Ω^+}^{} L_{i}( p , ω_{i}) f_{r}( p , ω_{i} ,ω_{o}) (n\cdotω_{i})dw_{i} Ω+Li(p,ωi)fr(p,ωi,ωo)(nωi)dwi 用蒙特卡罗积分求解 F N = 1 N ∑ i = 1 N f ( X i ) p ( X i ) F_{N} = \frac{1}{N} \sum_{i=1}^{N} \frac{f(X_{i})}{p(X_{i})} FN=N1i=1Np(Xi)f(Xi)
  • f(x) 是 L i ( p , ω i ) f r ( p , ω i , ω o ) ( n ⋅ ω i ) L_{i}(p,ω_{i})f_{r}(p,ω_{i},ω_{o})(n\cdotω_{i}) Li(p,ωi)fr(p,ωi,ωo)(nωi)
  • pdf(概率密度函数)是 “对半球进行采样” p ( ω i ) = 1 2 Π p(ω_{i}) = \frac{1}{2Π} p(ωi)=1
  • 得到式子 L o ( p , ω o ) L_{o}(p, ω_{o}) Lo(p,ωo) = 1 N ∑ i = 1 N L i ( p , ω i ) f r ( p , ω i , ω o ) ( n ⋅ ω i ) p ( ω i ) \frac{1}{N} \sum_{i=1}^{N} \frac{L_{i}(p,ω_{i})f_{r}(p,ω_{i},ω_{o})(n\cdotω_{i})}{p(ω_{i})} N1i=1Np(ωi)Li(p,ωi)fr(p,ωi,ωo)(nωi) 是正确的直接光照公式
    在这里插入图片描述

3.考虑全局光照

①考虑物体的反射光

在这里插入图片描述

  • Q同样也反射光线到P上(方向上也相当于P到Q点的光)
    在这里插入图片描述
  • Q 的直接光照 = Q 到 P 的反射
  • 但是这样做光线会有 指数级增长
    在这里插入图片描述
  • 假设只有一根光线时(只选择一个方向 ω i ω_{i} ωi
    在这里插入图片描述
  • 但递归需要停止,不然计算量无限增加(但又想保证质量)—— 俄罗斯轮盘赌 RR

②俄罗斯轮盘赌 RR (得到正确shade函数)

  • 通过随机概率选择是否继续追踪光线,可以有效地控制光线数量,并避免能量损失过多
  • 实现步骤
    • 设置一个概率 P
    • 以概率 P 发射光线:若随机数< P,则发射并计算光线亮度 Lo
    • 以概率 1-P 不发射光线:若随机数 ≥ P,不发射光线,认为亮度为0
    • 能量补偿:由于第三步会导致能量损失,为了弥补损失,需要将得到的光线亮度 Lo 除以 P,即 Lo/P,可以保证期望值不变
      在这里插入图片描述

③射线生成(追踪足够多的path)

  • 1.在 每个像素内均匀选择多个采样点
  • 2.并为每个采样点发射一条光线,
  • 3.然后使用路径追踪算法 计算每条光线的亮度
  • 4.将他们 平均起来得到像素最终亮度
    在这里插入图片描述

④对光源进行采样

在这里插入图片描述

  • 由于光源相对于半球来说比较小,所以 每个采样点发射的光线中,只有很少一部分会击中光源(有很少的光会从光源击中半球上被采样到的点),用均匀采样会导致浪费
  • 光源对场景的贡献亮度远远大于了其他方向,应该 更多地采样光源方向,提高效率
推导
  • 假设光源面积为 A —— pdf = 1 A \frac{1}{A} A1
  • 渲染方程在立体角上的积分 Lo = ∫ L i ⋅ f r ⋅ c o s d ω \int Li\cdot fr\cdot cos dω Lifrcosdω —— 这个积分代表场景中一点的亮度Lo 是半球上 所有方向的光线亮度和反射率的积分
  • 为了使用蒙特卡洛积分来估计场景中一点的亮度Lo,我们需要将渲染方程转化为对光源的积分
  • 数学的转化,需要找到 立体角 dω 和光源表面积 dA 之间的关系 —— 光源面积立体角方向在球面上的投影
  • 立体角的求法:球面面积法 ω = S / r 2 ω = S/r^2 ω=S/r2 —— d ω = d A c o s θ ′ ∣ x ′ − x ∣ 2 dω = \frac{dA cosθ'}{|x'-x|^2} dω=xx2dAcosθ
    在这里插入图片描述
  • 此时重写渲染方程 Lo = ∫ A L i ( x , ω i ) f r ( x , ω i , ω o ) c o s θ c o s θ ′ ∣ x ′ − x ∣ 2 d A \int_{A}^{} L_{i}( x, ω_{i}) f_{r}( x, ω_{i} ,ω_{o})\frac{cosθcosθ'}{|x'-x|^2}dA ALi(x,ωi)fr(x,ωi,ωo)xx2cosθcosθdA
  • 可以写出蒙特卡洛积分 f(x) = L i ( x , ω i ) f r ( x , ω i , ω o ) c o s θ c o s θ ′ ∣ x ′ − x ∣ 2 L_{i}( x, ω_{i}) f_{r}( x, ω_{i} ,ω_{o})\frac{cosθcosθ'}{|x'-x|^2} Li(x,ωi)fr(x,ωi,ωo)xx2cosθcosθ,pdf = 1/A

⑤结束

  • 来自于光源的进行光源采样,计算直接光照;其他非光源的就需要RR,计算间接光照
    在这里插入图片描述
  • 还得判断光源有没有被遮挡
    在这里插入图片描述

相关文章:

Games101学习笔记 Lecture16 Ray Tracing 4 (Monte Carlo Path Tracing)

Lecture16 Ray Tracing 4 (Monte Carlo Path Tracing 一、蒙特卡洛积分 Monte Carlo Integration二、路径追踪 Path tracing1.Whitted-Style Ray Tracings Problems2.只考虑直接光照时3.考虑全局光照①考虑物体的反射光②俄罗斯轮盘赌 RR (得到正确shade函数&#x…...

数据结构概念

文章目录 1. 概念 2. 数据结构和算法的关系 3. 内存 4. 数据的逻辑结构 5. 数据的存储结构 1. 顺序存储结构 2. 链式存储结构 3. 索引存储结构 4. 散列存储结构 6. 数据的运算 1. 概念 定义1(宏观): 数据结构是为了高效访问数据而…...

Windows 下载安装ffmpeg

下载地址 https://ffmpeg.org/download.html 测试 管理员方式打开控制台,输入ffmpeg测试 配置环境变量...

Java AI 编程助手

Java AI 编程助手是指利用人工智能技术来增强和优化Java开发过程中的各种任务和活动。它可以涵盖从代码生成和分析到测试和优化的多个方面,帮助开发人员提高生产效率、降低错误率,并优化代码质量和性能。 ### 功能和特点 1. **智能代码生成和建议**&am…...

day10:01集合

1 作用 Python中的集合(Set)是一个无序的、不包含重复元素的容器。它主要用于去重、成员测试、以及执行数学上的集合运算(如并集、交集、差集和对称差集)等操作。集合的内部实现通常基于哈希表,这提供了快速的成员测试…...

03浅谈提示工程、RAG和微调

03浅谈提示工程、RAG和微调 提示词Prompt Prompt(提示词)是指在使用大模型时,向模型提供的一些指令或问题。这些指令作为模型的输入,引导模型产生所需要的输出。例如,在生成文本时,Prompt可能是一个问题或…...

硅纪元视角 | AI纳米机器人突破癌症治疗,精准打击肿瘤细胞

在数字化浪潮的推动下,人工智能(AI)正成为塑造未来的关键力量。硅纪元视角栏目紧跟AI科技的最新发展,捕捉行业动态;提供深入的新闻解读,助您洞悉技术背后的逻辑;汇聚行业专家的见解,…...

刷代码随想录有感(125):动态规划——最长公共子序列

题干&#xff1a; 代码&#xff1a; class Solution { public:int longestCommonSubsequence(string text1, string text2) {vector<vector<int>>dp(text1.size() 1, vector<int>(text2.size() 1, 0));for(int i 1; i < text1.size(); i){for(int j …...

Linux和mysql中的基础知识

cpu读取的指令大部分在内存中&#xff08;不考虑缓存&#xff09; 任何程序在运行之前都的加入到内存。 eip->pc指针&#xff0c;指明当前指令在什么位置。 代码大概率是从上往下执行的&#xff0c;基于这样的基本理论。既可以将一部分指令加载到CPU对应的缓存中&#xf…...

ArcGIS Pro SDK (七)编辑 12 编辑模版

ArcGIS Pro SDK &#xff08;七&#xff09;编辑 12 编辑模版 文章目录 ArcGIS Pro SDK &#xff08;七&#xff09;编辑 12 编辑模版1 在图层上按名称查找编辑模板2 查找属于独立表的表模板3 当前模板4 更改模板的默认编辑工具5 隐藏或显示模板上的编辑工具6 使用图层创建新模…...

数据结构底层之HashMap(面经篇1)

1 . 讲一下hashmap的数据结构 HashMap是一种基于哈希表实现的数据结构&#xff0c;通常用于关联键值对&#xff0c;其中键是唯一的&#xff0c;而值可以重复。在Java中&#xff0c;HashMap是java.util.Map接口的一个实现&#xff0c;它提供了快速的查找、插入和删除操作。 数据…...

昇思学习打卡-6-基于MindSpore的GPT2文本摘要

第一次近距离接触GPT&#xff0c;了解了tokenizers这个分词库&#xff0c;感觉NLP和CV对比起来&#xff0c;处理流程基本一致&#xff0c;都是数据集加载和处理&#xff0c;模型构建、选择学习率、模型训练&#xff0c;进而可以使用模型进行推理。 不同的是&#xff0c;NLP可能…...

代码随想录算法训练营第2天|LeetCode977,209,59

977.有序数组平方 题目链接&#xff1a; 977. 有序数组的平方 - 力扣&#xff08;LeetCode&#xff09; 文章讲解&#xff1a;代码随想录 视频讲解&#xff1a; 双指针法经典题目 | LeetCode&#xff1a;977.有序数组的平方_哔哩哔哩_bilibili 第一想法 暴力算法肯定是先将元素…...

Web前端开发——HTML快速入门

HTML&#xff1a;控制网页的结构CSS&#xff1a;控制网页的表现 一、什么是HTML、CSS &#xff08;1&#xff09;HTML &#xff08;HyperText Markup Languaqe&#xff1a;超文本标记语言&#xff09; 超文本&#xff1a;超越了文本的限制&#xff0c;比普通文本更强大。除了…...

浅谈http协议及常见的面试题

1、浅谈http协议 HTTP&#xff08;Hypertext Transfer Protocol&#xff09;超文本传输协议&#xff0c;是互联网上应用最为广泛的一种网络协议&#xff0c;所有的WWW文件都必须遵守这个标准。它是基于TCP/IP通信协议来传递数据&#xff08;HTML文件、图片文件、查询结果等&am…...

LabVIEW自动探头外观检测

开发了一套基于LabVIEW的软件系统&#xff0c;结合视觉检测技术&#xff0c;实现探头及连接器外观的自动检测。通过使用高分辨率工业相机、光源和机械手臂&#xff0c;系统能够自动定位并检测探头表面的细微缺陷&#xff0c;如划痕、残胶、异色、杂物等。系统支持多种探头形态&…...

搏击与防卫笔记

文章目录 降龙十八掌 咏春个人防身笔记防卫直拳应对耳光防卫摆拳坐马冲拳 本来想以武术为标题的&#xff0c;想了想武术这个标题太大太深&#xff0c;自己连一知半解都算不上&#xff0c;就谢为搏击与防卫吧。 每个男孩都有个武侠梦&#xff0c;独步江湖&#xff0c;仗剑走天涯…...

泰国内部安全行动司令部数据泄露

BreachForums 论坛的一名成员宣布发生一起重大数据泄露事件&#xff0c;涉及泰国内部安全行动司令部 (ISOC)&#xff0c;该机构被称为泰国皇家武装部队的政治部门。 目前&#xff0c;我们无法准确确认此次泄露的真实性&#xff0c;因为该组织尚未在其网站上发布有关该事件的任…...

MATLAB算法实战应用案例精讲-【数模应用】分层聚类(附MATLAB、python和R语言代码实现)

目录 前言 几个高频面试题目 什么情况下选择分层聚类,什么情况下选择K-mean聚类呢?两种模型的好坏如何比较? 算法原理 SPSSAU 案例分析 SPSSPRO 1、作用 2、输入输出描述 3、案例示例 4、案例数据 5、案例操作 6、输出结果分析 7、注意事项 8、模型理论 分层…...

九、函数的声明和定义

函数声明&#xff1a; 1. 告诉编译器有一个函数叫什么&#xff0c;参数是什么&#xff0c;返回类型是什么。但是具体是不是存在&#xff0c;函数 声明决定不了。 2. 函数的声明一般出现在函数的使用之前。要满足先声明后使用。 3. 函数的声明一般要放在头文件中的。 定义的函…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式&#xff0c;可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

C++:std::is_convertible

C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

DBAPI如何优雅的获取单条数据

API如何优雅的获取单条数据 案例一 对于查询类API&#xff0c;查询的是单条数据&#xff0c;比如根据主键ID查询用户信息&#xff0c;sql如下&#xff1a; select id, name, age from user where id #{id}API默认返回的数据格式是多条的&#xff0c;如下&#xff1a; {&qu…...

EtherNet/IP转DeviceNet协议网关详解

一&#xff0c;设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络&#xff0c;本网关连接到EtherNet/IP总线中做为从站使用&#xff0c;连接到DeviceNet总线中做为从站使用。 在自动…...

【Oracle】分区表

个人主页&#xff1a;Guiat 归属专栏&#xff1a;Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

MySQL账号权限管理指南:安全创建账户与精细授权技巧

在MySQL数据库管理中&#xff0c;合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号&#xff1f; 最小权限原则&#xf…...

基于PHP的连锁酒店管理系统

有需要请加文章底部Q哦 可远程调试 基于PHP的连锁酒店管理系统 一 介绍 连锁酒店管理系统基于原生PHP开发&#xff0c;数据库mysql&#xff0c;前端bootstrap。系统角色分为用户和管理员。 技术栈 phpmysqlbootstrapphpstudyvscode 二 功能 用户 1 注册/登录/注销 2 个人中…...