LM-Cocktail:一种创新的模型合并方法打破预训练语言模型微调后的性能局限,实现语言模型在一般任务与特定领域的均衡高性能
LM-Cocktail:一种创新的模型合并方法打破预训练语言模型微调后的性能局限,实现语言模型在一般任务与特定领域的均衡高性能
使语言模型的微调类似于调制一杯精致的鸡尾酒。模型合并可用于提高单个模型的性能。我们发现此方法对于大型语言模型和密集嵌入模型也很有用,并设计了 LM-Cocktail 策略,该策略使用简单的函数计算合并权重来自动合并微调模型和基础模型。LM-Cocktail 可用于提高目标域的性能,而不会降低目标域之外的一般能力。它还可用于生成无需微调的新任务模型。
预训练的语言模型会不断微调,以更好地支持下游应用程序。但是,该操作可能会导致目标域以外的一般任务的性能明显下降。为了克服这个问题,LM-Cocktail它使微调模型在一般情况下保持弹性。该方法以模型合并的形式进行,通过加权平均将微调后的语言模型与预训练好的基础模型或其他领域的对等模型合并。尽管简单,LM-Cocktail却出奇地有效:结果模型能够在一般任务的整个范围内实现强大的经验表现,同时在目标领域保持优越的能力。我们在FLAN、MMLU、MTEB等常用基准上对LLama和BGE模型进行了综合实验,结果验证了本文方法的有效性。
相关论文:LM-Cocktail: Resilient Tuning of Language Models via Model Merging
资料下载:FlagEmbedding专为大语言模型各种检索增强任务设计的向量模型
1.LM-Cocktail:,让预训练语言模型在微调后依然保持广泛任
相关文章:
LM-Cocktail:一种创新的模型合并方法打破预训练语言模型微调后的性能局限,实现语言模型在一般任务与特定领域的均衡高性能
LM-Cocktail:一种创新的模型合并方法打破预训练语言模型微调后的性能局限,实现语言模型在一般任务与特定领域的均衡高性能 使语言模型的微调类似于调制一杯精致的鸡尾酒。模型合并可用于提高单个模型的性能。我们发现此方法对于大型语言模型和密集嵌入模型也很有用,并设计了…...
默认导出(default)和命名导出
1.默认导出 优点: 简洁的导入语法: 导入时不需要使用花括号,可以直接重命名。单一职责: 模块导出一个主要功能或对象时,默认导出更符合逻辑。 适用场景: 模块只有一个导出: 如一个组件、一个…...
开发个人Go-ChatGPT--1 项目介绍
开发个人Go-ChatGPT--1 项目介绍 开发个人Go-ChatGPT--1 项目介绍知识点大纲文章目录项目地址 开发个人Go-ChatGPT–1 项目介绍 本文将以一个使用Ollama部署的ChatGPT为背景,主要还是介绍和学习使用 go-zero 框架,开发个人Go-ChatGPT的服务器后端&#…...
皮卡超级壁纸 | 幸运壁纸幸运壁纸app是一款涵盖了热门影视剧、动漫、风景等等资源的装饰工具,
软件下载链接:壁纸下载方式在链接中文章底部 皮卡超级壁纸 皮卡超级壁纸是一款专为手机用户设计的壁纸应用,它提供了丰富多样的高清壁纸资源,让用户的手机界面焕然一新。这款应用以其海量的壁纸库和用户友好的操作界面,在市场上…...
普通集群与镜像集群配置
目录 一. 环境准备 二. 开始配置集群 三. RabbitMQ镜像集群配置 四. 安装并配置负载均衡器HA 一. 环境准备 关闭防火墙和selinux,进行时间同步 主机名系统IP服务rabbitmq-1 Rocky_linux9.4 192.168.226.22RabbitMQ,MySQLrabbitmq-2Rocky_linux9.41…...
2024科技文化节程序设计竞赛
补题链接 https://www.luogu.com.cn/contest/178895#problems A. 签到题 忽略掉大小为1的环,答案是剩下环的大小和减环的数量 #include<bits/stdc.h> #include<iostream> #include<cstdio> #include<vector> #include<map> #incl…...
玩转Easysearch语法
Elasticsearch 是一个基于Apache Lucene的开源分布式搜索和分析引擎,广泛应用于全文搜索、结构化搜索、分析等多种场景。 Easysearch 作为Elasticsearch 的国产化替代方案,不仅保持了与原生Elasticsearch 的高度兼容性,还在功能、性能、稳定性…...
【密码学】RSA公钥加密算法
文章目录 RSA定义RSA加密与解密加密解密 生成密钥对一个例子密钥对生成加密解密 对RSA的攻击通过密文来求得明文通过暴力破解来找出D通过E和N求出D对N进行质因数分解通过推测p和q进行攻击 中间人攻击 一些思考公钥密码比对称密码的机密性更高?对称密码会消失&#x…...
【ARMv8/v9 GIC 系列 5.1 -- GIC GICD_CTRL Enable 1 of N Wakeup Function】
请阅读【ARM GICv3/v4 实战学习 】 文章目录 GIC Enable 1 of N Wakeup Function基本原理工作机制配置方式应用场景小结GIC Enable 1 of N Wakeup Function 在ARM GICv3(Generic Interrupt Controller第三代)规范中,引入了一个名为"Enable 1 of N Wakeup"的功能。…...
C++怎么解决不支持字符串枚举?
首先,有两种方法:使用命名空间和字符串常量与使用 enum class 和辅助函数。 表格直观展示 特性使用命名空间和字符串常量使用 enum class 和辅助函数类型安全性低 - 编译器无法检查字符串有效性,运行时发现错误高 - 编译期类型检查…...
中英双语介绍四大会计师事务所(Big Four accounting firms)
中文版 “四大会计师事务所”(Big Four accounting firms)是全球最具影响力和规模最大的四家专业服务公司,它们在审计、税务、咨询和财务咨询等领域占据着主导地位。这四家公司分别是普华永道(PwC)、德勤(…...
ubuntu 查看联网配置
在Ubuntu中,你可以使用多种命令来查看联网配置。以下是一些常用的方法和命令: 查看网络接口配置: 使用 ip 命令可以查看网络接口的配置信息,包括IP地址、子网掩码等。 ip addr show或者,你也可以使用传统的 ifconfig 命…...
【数据分享】全国乡村旅游重点镇(乡)数据(Excel/Shp格式/免费获取)
之前我们分享过从我国文化和旅游部官网整理的2018-2023年我国50个重点旅游城市星级饭店季度经营状况数据(可查看之前发布的文章)!文化和旅游部官网上也分享有很多与旅游相关的常用数据,我们基于官网发布的名单文件整理得到全国乡村…...
停车场小程序的设计
管理员账户功能包括:系统首页,个人中心,车主管理,商家管理,停车场信息管理,预约停车管理,商场收费管理,留言板管理 微信端账号功能包括:系统首页,停车场信息…...
绿色金融相关数据合集(2007-2024年 具体看数据类型)
数据类型: 1.绿色债券数据:2014-2023 2.绿色信贷相关数据:2007-2022 3.全国各省及地级市绿色金融指数:1990-2022 4.碳排放权交易明细数据:2013-2024 5.绿色金融试点DID数据:2010-2023 数据来源&#…...
【matlab 项目工期优化】基于NSGA2/3的项目工期多目标优化(时间-成本-质量-安全)
一 背景介绍 本文分享了一个通用的项目工期优化的案例,决策变量是每个子项目的工期,优化目标是项目的完成时间最小,项目的总成本现值最小,项目的总安全水平最高,项目的总质量水平最高。采用的算法是NSGA2和NSGA3算法。…...
Python考前复习
选择题易错: python3不能完全兼容python2内置函数是python的内置对象之一,无需导入其他模块python中汉字变量合法,如“小李123”合法;但T-C不合法,因为有“-”集合无顺序,不能索引;range(5)[2]…...
虚拟机交叉编译基于ARM平台的opencv(ffmpeg/x264)
背景: 由于手上有一块rk3568的开发板,需要运行yolov5跑深度学习模型,但是原有的opencv不能对x264格式的视频进行解码,这里就需要将ffmpegx264编译进opencv。 但是开发板算力有限,所以这里采用在windows下,安…...
react之错误边界
错误边界实质是指什么 实际上是组件 错误边界捕获什么时候的错误 在渲染阶段的错误 错误边界捕获的是谁的错误 捕获的是子组件的错误 错误边界不能捕获什么错误 1、不能捕获异步代码 2、不能捕获事件处理函数 3、不能捕获服务端渲染 4、不能捕获自身抛出的错误 错误…...
openEuler系统之使用Keepalived+Nginx部署高可用Web集群
Linux系统之使用Keepalived+Nginx部署高可用Web集群 一、本次实践介绍1.1 本次实践简介1.2 本次实践环境规划二、keepalived介绍2.1 keepalived简介2.2 keepalived主要特点和功能2.3 使用场景三、Keepalived和Nginx介绍3.1 Nginx简介3.2 Nginx特点四、master节点安装nginx4.1 安…...
51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...
YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...
定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...
【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】
1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...
零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...
Linux 内存管理实战精讲:核心原理与面试常考点全解析
Linux 内存管理实战精讲:核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用,还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...
MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用
文章目录 一、背景知识:什么是 B-Tree 和 BTree? B-Tree(平衡多路查找树) BTree(B-Tree 的变种) 二、结构对比:一张图看懂 三、为什么 MySQL InnoDB 选择 BTree? 1. 范围查询更快 2…...
Chrome 浏览器前端与客户端双向通信实战
Chrome 前端(即页面 JS / Web UI)与客户端(C 后端)的交互机制,是 Chromium 架构中非常核心的一环。下面我将按常见场景,从通道、流程、技术栈几个角度做一套完整的分析,特别适合你这种在分析和改…...
ZYNQ学习记录FPGA(一)ZYNQ简介
一、知识准备 1.一些术语,缩写和概念: 1)ZYNQ全称:ZYNQ7000 All Pgrammable SoC 2)SoC:system on chips(片上系统),对比集成电路的SoB(system on board) 3)ARM:处理器…...
土建施工员考试:建筑施工技术重点知识有哪些?
《管理实务》是土建施工员考试中侧重实操应用与管理能力的科目,核心考查施工组织、质量安全、进度成本等现场管理要点。以下是结合考试大纲与高频考点整理的重点内容,附学习方向和应试技巧: 一、施工组织与进度管理 核心目标: 规…...
