数据的统计探针:SKlearn中的统计分析方法
数据的统计探针:SKlearn中的统计分析方法
在数据科学领域,统计分析是理解和解释数据的关键工具。Scikit-learn(简称sklearn),作为Python中一个功能强大的机器学习库,提供了多种方法来进行数据的统计分析。这些方法不仅可以帮助我们探索数据的基本属性,还可以作为特征工程和模型选择的基础。本文将详细介绍sklearn中用于数据统计分析的方法,并提供实际的代码示例。
1. 数据统计分析的重要性
数据统计分析在以下方面具有重要价值:
- 数据理解:揭示数据的基本特征,如分布、中心趋势和离散程度。
- 特征工程:基于统计特性构建新特征或选择重要特征。
- 模型选择:评估模型假设,如线性回归中的正态性假设。
2. sklearn中的数据统计分析方法
虽然sklearn主要是一个机器学习库,但它也提供了一些用于数据统计分析的工具:
2.1 描述性统计
描述性统计提供了数据的基本摘要,包括均值、中位数、方差、标准差等。
from sklearn.datasets import load_iris
import numpy as np# 加载数据集
iris = load_iris()
X = iris.data# 计算描述性统计量
mean = np.mean(X, axis=0)
std = np.std(X, axis=0)
min_values = np.min(X, axis=0)
max_values = np.max(X, axis=0)print("Mean:", mean)
print("Standard Deviation:", std)
print("Min:", min_values)
print("Max:", max_values)
2.2 相关性分析
相关性分析用于评估变量之间的线性关系。
from sklearn.metrics import pairwise# 计算相关系数矩阵
corr_matrix = pairwise.paired_cosine_similarity(X)print("Correlation Matrix:\n", corr_matrix)
2.3 协方差分析
协方差分析用于衡量变量之间的线性关系强度。
from scipy.stats import f_oneway# 假设我们有三个不同组的数据
group1 = X[:50, 0]
group2 = X[50:100, 0]
group3 = X[100:150, 0]# 进行协方差分析
anova = f_oneway(group1, group2, group3)
print("ANOVA F-value:", anova.statistic)
print("P-value:", anova.pvalue)
2.4 卡方检验
卡方检验用于分析分类变量之间的独立性。
from scipy.stats import chi2_contingency# 假设我们有两个分类变量
variable1 = np.array([0, 1, 0, 1, 1, 0, 1, 0, 1])
variable2 = np.array([0, 0, 1, 1, 0, 1, 0, 1, 1])# 进行卡方检验
chi2, p, dof, expected = chi2_contingency(np.crosstab([variable1, variable2]))print("Chi-squared:", chi2)
print("P-value:", p)
3. 结合实际应用
在实际应用中,数据统计分析可以帮助我们更好地理解数据特性,为模型训练和特征选择提供依据。
4. 结论
虽然sklearn的主要功能集中在机器学习算法上,但它提供的一些统计分析工具对于数据探索和预处理同样重要。本文详细介绍了sklearn中用于数据统计分析的方法,并提供了实际的代码示例。
希望本文能够帮助读者更好地理解sklearn中的数据统计分析功能,并在实际项目中有效地应用这些技术。随着数据量的不断增长,掌握数据统计分析技能将成为数据科学家和分析师的重要竞争力。
相关文章:

数据的统计探针:SKlearn中的统计分析方法
数据的统计探针:SKlearn中的统计分析方法 在数据科学领域,统计分析是理解和解释数据的关键工具。Scikit-learn(简称sklearn),作为Python中一个功能强大的机器学习库,提供了多种方法来进行数据的统计分析。…...

实例演示Kafka-Stream消息流式处理流程及原理
以下结合案例:统计消息中单词出现次数,来测试并说明kafka消息流式处理的执行流程 Maven依赖 <dependencies><dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-streams</artifactId><exclusio…...

【博士每天一篇文献-综述】Threats, Attacks, and Defenses in Machine Unlearning A Survey
1 介绍 年份:2024 作者:刘子耀,陈晨,南洋理工大学 期刊: 未发表 引用量:6 Liu Z, Ye H, Chen C, et al. Threats, attacks, and defenses in machine unlearning: A survey[J]. arXiv preprint arXiv:2403…...

Python数据分析实战,运输车辆驾驶行为分析,案例教程编程实例课程详解
引言 运输车辆的安全驾驶行为分析是确保道路安全、提高运输效率的重要环节。随着数据采集技术的发展和数据分析工具的普及,利用Python进行数据分析已成为这一领域的重要工具。本文将详细介绍如何使用Python进行运输车辆驾驶行为分析,涵盖数据采集、数据预处理、数据分析及结果…...

网络安全法对等级保护中的权利和义务有何规范?
在数字时代的交响乐章中,网络安全法与等级保护共同编织了一曲关于权利与义务的和谐旋律。《中华人民共和国网络安全法》作为我国网络安全领域的基本法,对等级保护提出了明确的规范,旨在构建一个安全、有序的网络空间。本文将深入解析网络安全…...

苹果清理软件:让你的设备焕然一新
随着时间的推移,无论是Mac电脑还是iOS设备,都可能会因为积累的垃圾文件、缓存、未使用的应用和其他冗余数据而开始表现出性能下降。这不仅会占用宝贵的存储空间,还可能影响设备的响应速度和电池寿命。幸运的是,有多种苹果清理软件…...

vue前端通过sessionStorage缓存字典
正常来说,一个vue项目前端需要用到的一些翻译字典对象保存方式一般有多重, 新建js文件方式保存通过vuex方式保存通过sessionStorage保存通过localStorage保存 正常以上几点的保存方式是够用了。 但是,当有字典不能以文件方式保存并且字典量…...

React Redux使用@reduxjs/toolkit的hooks
关于redux的学习过程需要几个官网,有redux官网,React Redux官网和Redux Toolkit的官网。 其中后者的中文没有找到,不过其中的使用在React Redux官网的快速入门中有介绍。 现在一般不使用connect借接口了。 对于借助Redux Toolkit的React Redu…...

Rejetto HFS 服务器存在严重漏洞受到攻击
AhnLab 报告称 ,黑客正在针对旧版本的 Rejetto HTTP 文件服务器 (HFS) 注入恶意软件和加密货币挖矿程序。 然而,由于存在错误, Rejetto 警告用户不要使用 2.3 至 2.4 版本。 2.3m 版本在个人、小型团队、教育机构和测试网络文件共享的开发…...

Electron开发 - 如何在主进程Main中让node-fetch使用系统代理
背景 开发过程中,用户设置的系统代理是不同的,比如公司内的服务器,所以就要动态地使用系统代理来访问,但是主进程默认为控制台级别的请求,不走系统代理,除非你指定系统代理配置,这个就就有了这…...

vue2 webpack使用optimization.splitChunks分包,实现按需引入,进行首屏加载优化
optimization.splitChunks的具体功能和配置信息可以去网上自行查阅。 这边简单讲一下他的使用场景、作用、如何使用: 1、没用使用splitChunks进行分包之前,所有模块都揉在一个文件里,那么当这个文件足够大、网速又一般的时候,首…...

深入理解 Docker 容器技术
一、引言 在当今的云计算和软件开发领域,Docker 容器技术已经成为了一项不可或缺的工具。它极大地改变了应用程序的部署和运行方式,为开发者和运维人员带来了诸多便利。 二、Docker 容器是什么? Docker 容器是一种轻量级、可移植、自包含的…...

redis并发、穿透、雪崩
Redis如何实现高并发 首先是单线程模型:redis采用单线程可以避免多线程下切换和竞争的开销,提高cpu的利用率,如果是多核cpu,可以部署多个redis实例。基于内存的数据存储:redis将数据存储在内存中,相比于硬…...

【架构设计】-- ACK 机制
1、ACK 机制的定义 ACK(全称:acknowledgement) 机制是一种确认机制,起源于TCP报文到达确认(ACK)机制(参考:TCP报文到达确认(ACK)机制_tcp接收方在收到一个报文…...

这些网络安全知识,请务必牢记!
#网络安全# 随着“互联网”时代的到来,人们的生活变得更加便利,但电信诈骗、信息泄露、恶意软件等也随之而来。面对网络这把双刃剑,如何绷紧思想“安全弦”,正确安全使用网络呢?今天,让我们跟随泰顺网信IP…...

学习笔记——交通安全分析11
目录 前言 当天学习笔记整理 4信控交叉口交通安全分析 结束语 前言 #随着上一轮SPSS学习完成之后,本人又开始了新教材《交通安全分析》的学习 #整理过程不易,喜欢UP就点个免费的关注趴 #本期内容接上一期10笔记 #最近确实太懒了,接受…...

Python 3 编程第一步
Python 3 编程第一步 Python 是一种广泛使用的高级编程语言,以其简洁明了的语法和强大的功能而闻名。Python 3 是该语言的最新版本,它在许多方面对早期的 Python 2 进行了改进和更新。本篇文章将作为 Python 3 编程的入门指南,带你迈出编程的第一步。 Python 3 的安装 首…...

【eMTC】eMTC 窄带以及带宽的关系
1 概述 eMTC 传输进行通信时,一般采用1.4M带宽,在和LTE小区联合部署时,需要将LTE的带宽分割成以1.4M带宽为粒度的单位,这个单位在协议上叫做窄带。 2 窄带定义 3 参考文献 36.211...

【MySQL】mysqldumpslow工具 -- 总结慢查询日志文件
1. 作用 在平时使用MySQL数据库时,经常进行查询操作,有些查询语句执行的时间非常长,当执行时间超过设定的阈值时,我们称这个查询为慢查询,慢查询的相关信息通常需要用日志记录下来称为慢查询日志,mysqldum…...

【mindspore进阶】02-ResNet50迁移学习
Mindspore 应用(2)ResNet50迁移学习 在实际应用场景中,由于训练数据集不足,所以很少有人会从头开始训练整个网络。普遍的做法是,在一个非常大的基础数据集上训练得到一个预训练模型,然后使用该模型来初始化…...

智能决策的艺术:揭秘决策树的奇妙原理与实战应用
引言 决策树(Decision Tree)是一种常用的监督学习算法,适用于分类和回归任务。它通过学习数据中的规则生成树状模型,从而做出预测决策。决策树因其易于理解和解释、无需大量数据预处理等优点,广泛应用于各种机器学习任…...

基于AOP的数据字典实现:实现前端下拉框的可配置更新
作者:后端小肥肠 创作不易,未经允许严禁转载。 目录 1. 前言 2. 数据字典 2.1. 数据字典简介 2.2. 数据字典如何管理各模块的下拉框 3. 数据字典核心内容解读 3.1. 表结构 3.2. 核心代码 3.2.1. 根据实体类名称获取下属数据字典 3.2.2. 数据字…...

基于CentOS Stream 9平台搭建RabbitMQ3.13.4以及开机自启
1. erlang与RabbitMQ对应版本参考:https://www.rabbitmq.com/which-erlang.html 2. 安装erlang 官网:https://www.erlang.org/downloads GitHub: https://github.com/rabbitmq/erlang-rpm/releases 2.1 安装依赖: yum -y install gcc glib…...

9、Redis 高级数据结构 HyperLogLog 和事务
1. HyperLogLog 简介 HyperLogLog 是一种用于基数估计的概率数据结构。它并不是一种新的数据结构,而是 Redis 中的一种字符串类型。HyperLogLog 的主要优点是能够利用极少的内存空间完成对独立总数的统计,适用于统计大量数据的独立元素数量,…...

MyBatis(30)如何在 MyBatis 中使用 XML 和注解混合配置方式
在MyBatis中,你可以灵活地选择XML配置方式、注解方式,或者将这两种方式混合使用来配置你的映射器(Mapper)。使用混合配置方式,你可以结合两者的优势,例如,利用XML配置复杂查询和动态SQL…...

强化学习与控制模型结合例子
强化学习与模型控制结合 强化学习(Reinforcement Learning, RL)与控制模型结合,可以通过整合传统控制理论和现代RL算法,利用控制模型提供的动态信息和稳定性保障,同时利用RL的学习能力优化控制策略。这种结合的方式被称为模型辅助强化学习(Model-Assisted Reinforcement…...

RKNN3588——利用推理YOLOv8推理图片
1. yolov8_test.py import os import cv2 import numpy as np from class_type import CLASSES# 设置对象置信度阈值和非极大值抑制(NMS)阈值。 OBJ_THRESH 0.25 NMS_THRESH 0.45 IMG_SIZE (640, 640)def filter_boxes(boxes, box_confidences, box_…...

【ARMv8/v9 GIC 系列 1.7 -- GIC PPI | SPI | SGI | LPI 中断使能配置介绍】
请阅读【ARM GICv3/v4 实战学习 】 文章目录 GIC 各种中断使能配置PPIs(每个处理器私有中断)SPIs(共享外设中断)SGIs(软件生成的中断)LPIs(局部中断)GIC 各种中断使能配置 在ARM GICv3和GICv4架构中,不同类型的中断(如PPIs、SPIs、SGIs和LPIs)可以通过不同的方式进…...

uniapp开发射击类小游戏
使用 UniApp 开发射击类小游戏可以遵循以下步骤: 项目规划 确定游戏的主题、玩法、关卡设计等。规划游戏的界面布局,包括游戏主界面、游戏场景、得分显示等。 技术准备 熟悉 UniApp 的开发文档和相关 API。准备所需的开发工具,如 HBuilderX。…...

spring6框架解析(by尚硅谷)
文章目录 spring61. 一些基本的概念、优势2. 入门案例实现maven聚合工程创建步骤分析实现过程 3. IoC(Inversion of Control)基于xml的bean环境搭建获取bean获取接口创建实现类依赖注入 setter注入 和 构造器注入原生方式的setter注入原生方式的构造器注…...