【MySQL】mysqldumpslow工具 -- 总结慢查询日志文件
1. 作用
在平时使用MySQL数据库时,经常进行查询操作,有些查询语句执行的时间非常长,当执行时间超过设定的阈值时,我们称这个查询为慢查询,慢查询的相关信息通常需要用日志记录下来称为慢查询日志,mysqldumpslow可以解析慢查询日志文件并汇总其内容,有关慢查询日志的内容我们在MySQL服务器配置与管理专题进行讲解。进行慢查询对应的SQL优化的依据。
2. 注意事项
通常情况下,mysqldumpslow 会将相似的查询分组并显示摘要输出,一般会把数字和字符串用 N和"S"代替,要想显示真实的值可以使用 -a 和 -n 选项。
假如: SELECT * FROM sms_send WHERE service_id=10 GROUP BY content LIMIT 0, 1000;
mysqldumpslow来显示:
Count: 1 Time=1.91s (1s) Lock=0.00s (0s) Rows=1000.0 (1000), vgos_dba[vgos_dba]@[10.130.229.196]
SELECT * FROM sms_send WHERE service_id=N GROUP BY content LIMIT N, N;
3. 使用方法
语法:
mysqldumpslow [options] [log_file ...]
在没有给出任何选项的输出如下:
Reading mysql slow query log from /usr/local/mysql/data/mysqld80-slow.log
Count: 1 Time=4.32s (4s) Lock=0.00s (0s) Rows=0.0 (0), root[root]@localhostinsert into t2 select * from t1 # 执⾏的SQLCount: 3 Time=2.53s (7s) Lock=0.00s (0s) Rows=0.0 (0), root[root]@localhostinsert into t2 select * from t1 limit N # 执⾏的SQLCount: 3 Time=2.13s (6s) Lock=0.00s (0s) Rows=0.0 (0), root[root]@localhostinsert into t1 select * from t1 # 执⾏的SQL
4. 常用选项
-s sort_type sort_type可选的值如下所示
- t,at:按查询时间或平均查询时间排序,默认排序
- l,al:按锁占用时间或平均锁占用时间排序
- r,ar:按发送的行数或平均发送的行数排序
- c:按计数排序
常见用法:
mysqldumpslow -s c -t 10 /var/run/mysqld/mysqld-slow.log # 取出使用最多的10条慢查询mysqldumpslow -s t -t 3 /var/run/mysqld/mysqld-slow.log # 取出查询时间最慢的3条慢查询mysqldumpslow -s t -t 10 -g “left join” /database/mysql/slow-log # 得到按照时间排序的前10条里面含有左连接的查询语句mysqldumpslow -s r -t 10 -g 'left join' /var/run/mysqld/mysqld-slow.log # 按照扫描行数最多的
相关文章:

【MySQL】mysqldumpslow工具 -- 总结慢查询日志文件
1. 作用 在平时使用MySQL数据库时,经常进行查询操作,有些查询语句执行的时间非常长,当执行时间超过设定的阈值时,我们称这个查询为慢查询,慢查询的相关信息通常需要用日志记录下来称为慢查询日志,mysqldum…...

【mindspore进阶】02-ResNet50迁移学习
Mindspore 应用(2)ResNet50迁移学习 在实际应用场景中,由于训练数据集不足,所以很少有人会从头开始训练整个网络。普遍的做法是,在一个非常大的基础数据集上训练得到一个预训练模型,然后使用该模型来初始化…...
智能决策的艺术:揭秘决策树的奇妙原理与实战应用
引言 决策树(Decision Tree)是一种常用的监督学习算法,适用于分类和回归任务。它通过学习数据中的规则生成树状模型,从而做出预测决策。决策树因其易于理解和解释、无需大量数据预处理等优点,广泛应用于各种机器学习任…...

基于AOP的数据字典实现:实现前端下拉框的可配置更新
作者:后端小肥肠 创作不易,未经允许严禁转载。 目录 1. 前言 2. 数据字典 2.1. 数据字典简介 2.2. 数据字典如何管理各模块的下拉框 3. 数据字典核心内容解读 3.1. 表结构 3.2. 核心代码 3.2.1. 根据实体类名称获取下属数据字典 3.2.2. 数据字…...

基于CentOS Stream 9平台搭建RabbitMQ3.13.4以及开机自启
1. erlang与RabbitMQ对应版本参考:https://www.rabbitmq.com/which-erlang.html 2. 安装erlang 官网:https://www.erlang.org/downloads GitHub: https://github.com/rabbitmq/erlang-rpm/releases 2.1 安装依赖: yum -y install gcc glib…...
9、Redis 高级数据结构 HyperLogLog 和事务
1. HyperLogLog 简介 HyperLogLog 是一种用于基数估计的概率数据结构。它并不是一种新的数据结构,而是 Redis 中的一种字符串类型。HyperLogLog 的主要优点是能够利用极少的内存空间完成对独立总数的统计,适用于统计大量数据的独立元素数量,…...
MyBatis(30)如何在 MyBatis 中使用 XML 和注解混合配置方式
在MyBatis中,你可以灵活地选择XML配置方式、注解方式,或者将这两种方式混合使用来配置你的映射器(Mapper)。使用混合配置方式,你可以结合两者的优势,例如,利用XML配置复杂查询和动态SQL…...
强化学习与控制模型结合例子
强化学习与模型控制结合 强化学习(Reinforcement Learning, RL)与控制模型结合,可以通过整合传统控制理论和现代RL算法,利用控制模型提供的动态信息和稳定性保障,同时利用RL的学习能力优化控制策略。这种结合的方式被称为模型辅助强化学习(Model-Assisted Reinforcement…...
RKNN3588——利用推理YOLOv8推理图片
1. yolov8_test.py import os import cv2 import numpy as np from class_type import CLASSES# 设置对象置信度阈值和非极大值抑制(NMS)阈值。 OBJ_THRESH 0.25 NMS_THRESH 0.45 IMG_SIZE (640, 640)def filter_boxes(boxes, box_confidences, box_…...

【ARMv8/v9 GIC 系列 1.7 -- GIC PPI | SPI | SGI | LPI 中断使能配置介绍】
请阅读【ARM GICv3/v4 实战学习 】 文章目录 GIC 各种中断使能配置PPIs(每个处理器私有中断)SPIs(共享外设中断)SGIs(软件生成的中断)LPIs(局部中断)GIC 各种中断使能配置 在ARM GICv3和GICv4架构中,不同类型的中断(如PPIs、SPIs、SGIs和LPIs)可以通过不同的方式进…...
uniapp开发射击类小游戏
使用 UniApp 开发射击类小游戏可以遵循以下步骤: 项目规划 确定游戏的主题、玩法、关卡设计等。规划游戏的界面布局,包括游戏主界面、游戏场景、得分显示等。 技术准备 熟悉 UniApp 的开发文档和相关 API。准备所需的开发工具,如 HBuilderX。…...

spring6框架解析(by尚硅谷)
文章目录 spring61. 一些基本的概念、优势2. 入门案例实现maven聚合工程创建步骤分析实现过程 3. IoC(Inversion of Control)基于xml的bean环境搭建获取bean获取接口创建实现类依赖注入 setter注入 和 构造器注入原生方式的setter注入原生方式的构造器注…...

Open3D 计算点云的马氏距离
目录 一、概述 1.1原理 1.2应用 二、代码实现 三、实现效果 3.1原始点云 3.2计算后点云 一、概述 1.1原理 马氏距离(Mahalanobis Distance)是一种度量多维数据点与数据分布中心之间距离的方法。与欧几里得距离不同,马氏距离考虑了数据…...
Java事务(Transaction)
Java事务(Transaction)是数据库管理系统执行过程中的一个逻辑单位,由一个有限的数据库操作序列组成,这些操作要么全部执行,要么全部不执行,是一个不可分割的工作单位。事务的引入主要是为了解决并发操作数据…...

算法 —— 二分查找
目录 二分查找 在排序数组中查找元素的第一个和最后一个位置 搜索插入位置 x的平方根 山峰数组的峰顶索引 寻找峰值 搜索旋转排序数组中的最⼩值 点名 二分查找模板分为三种:1、朴素的二分模板 2、查找左边界的二分模板 3、查找右边界的二分模板…...

Mysql explain语句详解与实例展示
首先简单介绍sql: SQL语言共分为四大类:数据查询语言DQL,数据操纵语言DML,数据定义语言DDL,数据控制语言DCL。 1. 数据查询语言DQL 数据查询语言DQL基本结构是由SELECT子句,FROM子句,WHERE子句…...
Python基础问题汇总
为什么学习Python? 易学易用:Python语法简洁清晰,易于学习。广泛的应用领域:适用于Web开发、数据科学、人工智能、自动化脚本等多种场景。强大的库支持:拥有丰富的第三方库,如NumPy、Pandas、TensorFlow等…...

【讲解下iOS语言基础】
🌈个人主页: 程序员不想敲代码啊 🏆CSDN优质创作者,CSDN实力新星,CSDN博客专家 👍点赞⭐评论⭐收藏 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共…...

【网络安全】实验一(网络拓扑环境的搭建)
一、本次实验的实验目的 学习利用 VMware 创建虚拟环境 学习利用 VMware 搭建各自网络拓扑环境 二、创建虚拟机 三、克隆虚拟机 选择克隆的系统必须处于关机状态。 方法一: 方法二: 需要修改克隆计算机的名字,避免产生冲突。 四、按照要求完…...

Docker-基础
一,Docker简介,功能特性与应用场景 1.1 Docker简介 Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...
ES6从入门到精通:前言
ES6简介 ES6(ECMAScript 2015)是JavaScript语言的重大更新,引入了许多新特性,包括语法糖、新数据类型、模块化支持等,显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var…...

MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
比较数据迁移后MySQL数据库和OceanBase数据仓库中的表
设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...
苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会
在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...
HTML前端开发:JavaScript 获取元素方法详解
作为前端开发者,高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法,分为两大系列: 一、getElementBy... 系列 传统方法,直接通过 DOM 接口访问,返回动态集合(元素变化会实时更新)。…...