当前位置: 首页 > news >正文

智能决策的艺术:揭秘决策树的奇妙原理与实战应用

引言

决策树(Decision Tree)是一种常用的监督学习算法,适用于分类和回归任务。它通过学习数据中的规则生成树状模型,从而做出预测决策。决策树因其易于理解和解释、无需大量数据预处理等优点,广泛应用于各种机器学习任务中。

本文将详细介绍决策树算法的原理,并通过具体案例实现决策树模型。

目录

  1. 决策树算法原理
    • 决策树的结构
    • 划分标准
      • 信息增益
      • 基尼指数
    • 决策树生成
    • 决策树剪枝
  2. 决策树的优缺点
  3. 决策树案例实现
    • 数据集介绍
    • 数据预处理
    • 构建决策树模型
    • 模型评估
    • 结果可视化
  4. 总结

1. 决策树算法原理

决策树的结构

决策树由节点和边组成,主要分为以下几种节点:

  • 根节点(Root Node):树的起点,不包含父节点。
  • 内部节点(Internal Node):包含一个或多个子节点,用于根据特征划分数据。
  • 叶节点(Leaf Node):不包含子节点,代表分类或回归的结果。

划分标准

决策树的核心在于如何选择最优特征来划分数据。常用的划分标准包括信息增益和基尼指数。

信息增益

信息增益用于衡量特征对数据集纯度的提升。信息增益越大,说明特征越有利于划分数据。

  • 熵(Entropy):度量数据集的纯度。公式如下:
    [
    H(D) = - \sum_{i=1}^{n} p_i \log_2(p_i)
    ]
    其中,( p_i ) 表示数据集中第 ( i ) 类的比例。

  • 条件熵(Conditional Entropy):给定特征条件下数据集的纯度。公式如下:
    [
    H(D|A) = \sum_{v=1}^{V} \frac{|D_v|}{|D|} H(D_v)
    ]
    其中,( |D_v| ) 表示特征 ( A ) 取值为 ( v ) 的样本数,( H(D_v) ) 表示子集 ( D_v ) 的熵。

  • 信息增益(Information Gain):特征 ( A ) 对数据集 ( D ) 的信息增益。公式如下:
    [
    IG(D, A) = H(D) - H(D|A)
    ]

基尼指数

基尼指数用于衡量数据集的不纯度。基尼指数越小,说明数据集越纯。

  • 基尼指数(Gini Index):公式如下:
    [
    Gini(D) = 1 - \sum_{i=1}^{n} p_i^2
    ]

决策树生成

决策树的生成过程可以概括为以下步骤:

  1. 选择最优特征:根据划分标准(如信息增益、基尼指数)选择最优特征。
  2. 划分数据集:根据最优特征将数据集划分为子集。
  3. 递归构建子树:对子集递归执行步骤1和2,直到满足停止条件。

决策树剪枝

决策树容易过拟合,通过剪枝可以控制树的复杂度,减少过拟合。常用的剪枝方法包括预剪枝和后剪枝。

  • 预剪枝(Pre-Pruning):在生成过程中设置条件,提前停止树的生长。
  • 后剪枝(Post-Pruning):在树生成后,通过交叉验证等方法剪去不重要的子树。

2. 决策树的优缺点

优点

  • 易于理解和解释:决策树的树状结构直观,便于解释。
  • 无需大量数据预处理:决策树可以处理数据中的缺失值和不一致性。
  • 适用于多种类型的数据:可以处理数值型和分类型数据。

缺点

  • 容易过拟合:决策树容易生成复杂的树,导致过拟合。
  • 对噪声敏感:数据中的噪声和异常值可能影响树的结构。
  • 稳定性差:小的变动可能导致决策树结构的大变化。

3. 决策树案例实现

数据集介绍

我们将使用著名的鸢尾花数据集(Iris Dataset),该数据集包含150个样本,每个样本有4个特征(花萼长度、花萼宽度、花瓣长度和花瓣宽度),目标是根据这些特征预测鸢尾花的种类(Setosa、Versicolor和Virginica)。

数据预处理

首先,我们导入所需的库,并加载鸢尾花数据集。

import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler# 加载数据集
iris = load_iris()
data = pd.DataFrame(data=iris.data, columns=iris.feature_names)
data['target'] = iris.target# 查看数据集基本信息
print(data.head())

接下来,我们将数据集划分为训练集和测试集,并进行标准化处理。

# 划分训练集和测试集
X = data.drop('target', axis=1)
y = data['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 标准化处理
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

构建决策树模型

我们将使用Scikit-learn中的DecisionTreeClassifier来构建决策树模型。

from sklearn.tree import DecisionTreeClassifier# 构建决策树模型
clf = DecisionTreeClassifier(criterion='gini', max_depth=4, random_state=42)
clf.fit(X_train, y_train)# 模型预测
y_pred = clf.predict(X_test)

模型评估

我们将使用准确率、混淆矩阵等指标评估模型的性能。

from sklearn.metrics import accuracy_score, confusion_matrix, classification_report# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy:.2f}')# 混淆矩阵
conf_matrix = confusion_matrix(y_test, y_pred)
print('Confusion Matrix:')
print(conf_matrix)# 分类报告
class_report = classification_report(y_test, y_pred, target_names=iris.target_names)
print('Classification Report:')
print(class_report)

结果可视化

我们可以使用Scikit-learn的export_graphviz方法将决策树可视化。

from sklearn.tree import export_graphviz
import graphviz# 导出决策树
dot_data = export_graphviz(clf, out_file=None, feature_names=iris.feature_names, class_names=iris.target_names, filled=True, rounded=True, special_characters=True)  
graph = graphviz.Source(dot_data)  
graph.render("iris_decision_tree")# 显示决策树
graph

4. 总结

本文详细介绍了决策树算法的原理,包括决策树的结构、划分标准、生成过程和剪枝方法。通过鸢尾花数据集案例,我们展示了如何使用Python和Scikit-learn构建、评估和可视化决策树模型。

决策树是一种直观且易于解释的机器学习算法,适用于各种分类和回归任务。然而,决策树也有其局限性,如容易过拟合和对噪声敏感。在实际应用中,可以通过剪枝、集成学习等方法改进决策树的性能。希望本文对你理解和应用决策树算法有所帮助。

相关文章:

智能决策的艺术:揭秘决策树的奇妙原理与实战应用

引言 决策树(Decision Tree)是一种常用的监督学习算法,适用于分类和回归任务。它通过学习数据中的规则生成树状模型,从而做出预测决策。决策树因其易于理解和解释、无需大量数据预处理等优点,广泛应用于各种机器学习任…...

基于AOP的数据字典实现:实现前端下拉框的可配置更新

作者:后端小肥肠 创作不易,未经允许严禁转载。 目录 1. 前言 2. 数据字典 2.1. 数据字典简介 2.2. 数据字典如何管理各模块的下拉框 3. 数据字典核心内容解读 3.1. 表结构 3.2. 核心代码 3.2.1. 根据实体类名称获取下属数据字典 3.2.2. 数据字…...

基于CentOS Stream 9平台搭建RabbitMQ3.13.4以及开机自启

1. erlang与RabbitMQ对应版本参考:https://www.rabbitmq.com/which-erlang.html 2. 安装erlang 官网:https://www.erlang.org/downloads GitHub: https://github.com/rabbitmq/erlang-rpm/releases 2.1 安装依赖: yum -y install gcc glib…...

9、Redis 高级数据结构 HyperLogLog 和事务

1. HyperLogLog 简介 HyperLogLog 是一种用于基数估计的概率数据结构。它并不是一种新的数据结构,而是 Redis 中的一种字符串类型。HyperLogLog 的主要优点是能够利用极少的内存空间完成对独立总数的统计,适用于统计大量数据的独立元素数量&#xff0c…...

MyBatis(30)如何在 MyBatis 中使用 XML 和注解混合配置方式

在MyBatis中,你可以灵活地选择XML配置方式、注解方式,或者将这两种方式混合使用来配置你的映射器(Mapper)。使用混合配置方式,你可以结合两者的优势,例如,利用XML配置复杂查询和动态SQL&#xf…...

强化学习与控制模型结合例子

强化学习与模型控制结合 强化学习(Reinforcement Learning, RL)与控制模型结合,可以通过整合传统控制理论和现代RL算法,利用控制模型提供的动态信息和稳定性保障,同时利用RL的学习能力优化控制策略。这种结合的方式被称为模型辅助强化学习(Model-Assisted Reinforcement…...

RKNN3588——利用推理YOLOv8推理图片

1. yolov8_test.py import os import cv2 import numpy as np from class_type import CLASSES# 设置对象置信度阈值和非极大值抑制(NMS)阈值。 OBJ_THRESH 0.25 NMS_THRESH 0.45 IMG_SIZE (640, 640)def filter_boxes(boxes, box_confidences, box_…...

【ARMv8/v9 GIC 系列 1.7 -- GIC PPI | SPI | SGI | LPI 中断使能配置介绍】

请阅读【ARM GICv3/v4 实战学习 】 文章目录 GIC 各种中断使能配置PPIs(每个处理器私有中断)SPIs(共享外设中断)SGIs(软件生成的中断)LPIs(局部中断)GIC 各种中断使能配置 在ARM GICv3和GICv4架构中,不同类型的中断(如PPIs、SPIs、SGIs和LPIs)可以通过不同的方式进…...

uniapp开发射击类小游戏

使用 UniApp 开发射击类小游戏可以遵循以下步骤: 项目规划 确定游戏的主题、玩法、关卡设计等。规划游戏的界面布局,包括游戏主界面、游戏场景、得分显示等。 技术准备 熟悉 UniApp 的开发文档和相关 API。准备所需的开发工具,如 HBuilderX。…...

spring6框架解析(by尚硅谷)

文章目录 spring61. 一些基本的概念、优势2. 入门案例实现maven聚合工程创建步骤分析实现过程 3. IoC(Inversion of Control)基于xml的bean环境搭建获取bean获取接口创建实现类依赖注入 setter注入 和 构造器注入原生方式的setter注入原生方式的构造器注…...

Open3D 计算点云的马氏距离

目录 一、概述 1.1原理 1.2应用 二、代码实现 三、实现效果 3.1原始点云 3.2计算后点云 一、概述 1.1原理 马氏距离(Mahalanobis Distance)是一种度量多维数据点与数据分布中心之间距离的方法。与欧几里得距离不同,马氏距离考虑了数据…...

Java事务(Transaction)

Java事务(Transaction)是数据库管理系统执行过程中的一个逻辑单位,由一个有限的数据库操作序列组成,这些操作要么全部执行,要么全部不执行,是一个不可分割的工作单位。事务的引入主要是为了解决并发操作数据…...

算法 —— 二分查找

目录 二分查找 在排序数组中查找元素的第一个和最后一个位置 搜索插入位置 x的平方根 山峰数组的峰顶索引 寻找峰值 搜索旋转排序数组中的最⼩值 点名 二分查找模板分为三种:1、朴素的二分模板 2、查找左边界的二分模板 3、查找右边界的二分模板&#xf…...

Mysql explain语句详解与实例展示

首先简单介绍sql: SQL语言共分为四大类:数据查询语言DQL,数据操纵语言DML,数据定义语言DDL,数据控制语言DCL。 1. 数据查询语言DQL 数据查询语言DQL基本结构是由SELECT子句,FROM子句,WHERE子句…...

Python基础问题汇总

为什么学习Python? 易学易用:Python语法简洁清晰,易于学习。广泛的应用领域:适用于Web开发、数据科学、人工智能、自动化脚本等多种场景。强大的库支持:拥有丰富的第三方库,如NumPy、Pandas、TensorFlow等…...

【讲解下iOS语言基础】

🌈个人主页: 程序员不想敲代码啊 🏆CSDN优质创作者,CSDN实力新星,CSDN博客专家 👍点赞⭐评论⭐收藏 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共…...

【网络安全】实验一(网络拓扑环境的搭建)

一、本次实验的实验目的 学习利用 VMware 创建虚拟环境 学习利用 VMware 搭建各自网络拓扑环境 二、创建虚拟机 三、克隆虚拟机 选择克隆的系统必须处于关机状态。 方法一: 方法二: 需要修改克隆计算机的名字,避免产生冲突。 四、按照要求完…...

Docker-基础

一,Docker简介,功能特性与应用场景 1.1 Docker简介 Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器…...

《昇思25天学习打卡营第14天|onereal》

第14天学习内容如下: Diffusion扩散模型 本文基于Hugging Face:The Annotated Diffusion Model一文翻译迁移而来,同时参考了由浅入深了解Diffusion Model一文。 本教程在Jupyter Notebook上成功运行。如您下载本文档为Python文件&#xff0c…...

LeetCode 744, 49, 207

目录 744. 寻找比目标字母大的最小字母题目链接标签思路代码 49. 字母异位词分组题目链接标签思路代码 207. 课程表题目链接标签思路代码 744. 寻找比目标字母大的最小字母 题目链接 744. 寻找比目标字母大的最小字母 标签 数组 二分查找 思路 本题比 基础二分查找 难的一…...

stm32G473的flash模式是单bank还是双bank?

今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

vue3 字体颜色设置的多种方式

在Vue 3中设置字体颜色可以通过多种方式实现&#xff0c;这取决于你是想在组件内部直接设置&#xff0c;还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法&#xff1a; 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

laravel8+vue3.0+element-plus搭建方法

创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...

人机融合智能 | “人智交互”跨学科新领域

本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...

并发编程 - go版

1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程&#xff0c;系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

PHP 8.5 即将发布:管道操作符、强力调试

前不久&#xff0c;PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5&#xff01;作为 PHP 语言的又一次重要迭代&#xff0c;PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是&#xff0c;借助强大的本地开发环境 ServBay&am…...

通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器

拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件&#xff1a; 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...