当前位置: 首页 > news >正文

数据统计与数据分组18-25题(30 天 Pandas 挑战)

数据统计与数据分组

  • 1. 知识点
    • 1.18 分箱与统计个数
    • 1.19 分组与求和统计
    • 1.20 分组获取最小值
    • 1.21 分组获取值个数
    • 1.22 分组与条件查询
    • 1.23 分组与条件查询及获取最大值
    • 1.24 分组及自定义函数
    • 1.25 分组+lambda函数统计
  • 2. 题目
    • 2.18 按分类统计薪水(数据统计)
    • 2.19 查找每个员工花费的总时间(数据分组)
    • 2.20 游戏玩法分析 I(数据分组)
    • 2.21 每位教师所教授的科目种类的数量(数据分组)
    • 2.22 超过5名学生的课(数据分组)
    • 2.23 订单最多的客户(数据分组)
    • 2.24 按日期分组销售产品(数据分组)
    • 2.25 每天的领导和合伙人(数据分组)

1. 知识点

1.18 分箱与统计个数

  • 分箱操作
    # float('inf')正无穷
    bins=[0,20000,50001,float('inf')]
    labels=['Low Salary', 'Average Salary', 'High Salary']
    accounts['category']=pd.cut(accounts['income'],bins=bins,labels=labels,right=False)
    
  • 数值统计
    accounts_new=accounts['category'].value_counts().reset_index()
    

1.19 分组与求和统计

  • 分组统计
    employees=employees.groupby(['event_day','emp_id']).agg({'total_time':'sum'}).reset_index()
    
  • 多种数值统计
    employees=employees.groupby(['event_day','emp_id']).agg(
    total_add=('total_time','sum'),
    total_mean=('total_time','mean')
    ).reset_index()
    

1.20 分组获取最小值

  • 分组获取最小值
    activity=activity.groupby('player_id').agg(first_login=('event_date','min')).reset_index()
    

1.21 分组获取值个数

  • 分组获取最小值
    teacher=teacher.groupby('teacher_id').agg(cnt=('subject_id','count')).reset_index()
    

1.22 分组与条件查询

courses=courses.groupby('class').agg(counts=('student','count')).reset_index() # 分组
courses=courses.query('`counts`>5')[['class']] # 条件查询

1.23 分组与条件查询及获取最大值

  • 分组统计
    orders=orders.groupby('customer_number').agg(counts=('order_number','count')).reset_index()
    
  • 最大值
    max_orders=orders['counts'].max()
    
  • 条件查询
    results=orders.query(f'`counts`=={max_orders}')[['customer_number']]
    

1.24 分组及自定义函数

def get_join(x):x_list=sorted(list(set(x)))return ','.join(x_list)def get_count(x):x_list=set(x)return len(x_list)activities=activities.groupby(['sell_date']).agg(num_sold=('product',get_count),products=('product',get_join)).reset_index()

1.25 分组+lambda函数统计

daily_sales=daily_sales.groupby(['date_id','make_name']).agg(unique_leads=('lead_id',lambda x:len(set(x))),unique_partners=('partner_id',lambda x:len(set(x)))).reset_index()

2. 题目

2.18 按分类统计薪水(数据统计)

在这里插入图片描述
在这里插入图片描述

import pandas as pddef count_salary_categories(accounts: pd.DataFrame) -> pd.DataFrame:# float('inf')bins=[0,20000,50001,float('inf')]labels=['Low Salary', 'Average Salary', 'High Salary']accounts['category']=pd.cut(accounts['income'],bins=bins,labels=labels,right=False)accounts_new=accounts['category'].value_counts().reset_index()accounts_new=accounts_new.rename(columns={'count':'accounts_count'})accounts_new=accounts_new.sort_values('category',ascending=False)return accounts_new

2.19 查找每个员工花费的总时间(数据分组)

在这里插入图片描述在这里插入图片描述
在这里插入图片描述

import pandas as pddef total_time(employees: pd.DataFrame) -> pd.DataFrame:# pandas流employees=employees.assign(total_time = employees.out_time-employees.in_time).groupby(['event_day','emp_id']).agg({'total_time':'sum'}).reset_index().rename(columns = {'event_day':'day'})# employees['total_time']=employees['out_time']-employees['in_time']# employees=employees.groupby(['event_day','emp_id'])['total_time'].sum().reset_index()# employees=employees.rename(columns={'event_day':'day'})# employees.sort_values('emp_id',inplace=True)return employees

2.20 游戏玩法分析 I(数据分组)

在这里插入图片描述
在这里插入图片描述

import pandas as pddef game_analysis(activity: pd.DataFrame) -> pd.DataFrame:activity=activity.groupby('player_id').agg(first_login=('event_date','min')).reset_index()return activity

2.21 每位教师所教授的科目种类的数量(数据分组)

在这里插入图片描述
在这里插入图片描述在这里插入图片描述

import pandas as pddef count_unique_subjects(teacher: pd.DataFrame) -> pd.DataFrame:teacher.drop_duplicates(['teacher_id','subject_id'],inplace=True)teacher=teacher.groupby('teacher_id').agg(cnt=('subject_id','count')).reset_index()return teacher

2.22 超过5名学生的课(数据分组)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

import pandas as pddef find_classes(courses: pd.DataFrame) -> pd.DataFrame:courses=courses.groupby('class').agg(counts=('student','count')).reset_index()return courses.query('`counts`>5')[['class']]

2.23 订单最多的客户(数据分组)

在这里插入图片描述
在这里插入图片描述

import pandas as pddef largest_orders(orders: pd.DataFrame) -> pd.DataFrame:orders=orders.groupby('customer_number').agg(counts=('order_number','count')).reset_index()max_orders=orders['counts'].max()results=orders.query(f'`counts`=={max_orders}')[['customer_number']]return results

2.24 按日期分组销售产品(数据分组)

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

import pandas as pddef categorize_products(activities: pd.DataFrame) -> pd.DataFrame:activities=activities.groupby(['sell_date']).agg(num_sold=('product',lambda x:len(set(x))),products=('product',lambda x:','.join(sorted(list(set(x)))))).reset_index()return activities

2.25 每天的领导和合伙人(数据分组)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

import pandas as pddef daily_leads_and_partners(daily_sales: pd.DataFrame) -> pd.DataFrame:daily_sales=daily_sales.groupby(['date_id','make_name']).agg(unique_leads=('lead_id',lambda x:len(set(x))),unique_partners=('partner_id',lambda x:len(set(x)))).reset_index()return daily_sales

相关文章:

数据统计与数据分组18-25题(30 天 Pandas 挑战)

数据统计与数据分组 1. 知识点1.18 分箱与统计个数1.19 分组与求和统计1.20 分组获取最小值1.21 分组获取值个数1.22 分组与条件查询1.23 分组与条件查询及获取最大值1.24 分组及自定义函数1.25 分组lambda函数统计 2. 题目2.18 按分类统计薪水(数据统计&#xff09…...

Apache Seata应用侧启动过程剖析——注册中心与配置中心模块

本文来自 Apache Seata官方文档,欢迎访问官网,查看更多深度文章。 本文来自 Apache Seata官方文档,欢迎访问官网,查看更多深度文章。 Apache Seata应用侧启动过程剖析——注册中心与配置中心模块 前言 在Seata的应用侧&#xf…...

大话光学原理:1.“实体泛光说”、反射与折射

一、实体泛光说 在古希腊,那些喜好沉思的智者们中,曾流传着一个奇妙的设想:他们认为,我们的眼睛仿佛伸出无数触手般的光线,这些光线能向四面八方延伸,紧紧抓住周围的每一个物体。于是,当我们凝视…...

住宅代理、移动代理和数据中心代理之间的区别

如果您是一名认真的互联网用户,可能需要反复访问某个网站或服务器,可能是为了数据抓取、价格比较、SEO 监控等用例,而不会被 IP 列入黑名单或被 CAPTCHA 阻止。 代理的工作原理是将所有传出数据发送到代理服务器,然后代理服务器将…...

光学传感器图像处理流程(一)

光学传感器图像处理流程(一) 1. 处理流程总览2. 详细处理流程2.1. 图像预处理2.1.1. 降噪处理2.1.2. 薄云处理2.1.3. 阴影处理 2.2. 辐射校正2.2.1. 辐射定标2.2.2. 大气校正2.2.3. 地形校正 2.3. 几何校正2.3.1. 图像配准2.3.2. 几何粗校正2.3.3. 几何精…...

el-table 树状表格查询符合条件的数据

需要对el-table的树状表格根据输入机构名称&#xff0c;筛选出符合条件的数据&#xff0c;可用如下方法&#xff1a; 页面内容如下&#xff1a; <el-input v-model"ogeName" placeholder"请输入机构名称"><el-table :data"list" row…...

MQTT教程--服务器使用EMQX和客户端使用MQTTX

什么是MQTT MQTT&#xff08;Message Queuing Telemetry Transport&#xff09;是一种轻量级、基于发布-订阅模式的消息传输协议&#xff0c;适用于资源受限的设备和低带宽、高延迟或不稳定的网络环境。它在物联网应用中广受欢迎&#xff0c;能够实现传感器、执行器和其它设备…...

326. 3 的幂

哈喽&#xff01;大家好&#xff0c;我是奇哥&#xff0c;一位专门给面试官添堵的职业面试员 文章持续更新&#xff0c;可以微信搜索【小奇JAVA面试】第一时间阅读&#xff0c;回复【资料】更有我为大家准备的福利哟&#xff01; 文章目录 一、题目二、答案三、总结 一、题目 …...

多标签问题

一、多标签问题与单标签问题的区别&#xff1a; 多标签问题是单标签问题的推广。 举个例子&#xff0c;同时识别图片中的小汽车&#xff0c;公交车&#xff0c;行人时&#xff0c;标签值有三个&#xff1a;小汽车&#xff0c;公交车&#xff0c;行人。 单标签问题仅对一个标签…...

suricata7 rule加载(三)加载options

suricata7.0.5 加载options (msg:“HTTP Request Example”; flow:established,to_server; http.method; content:“POST”; http.uri; content:“query.php”; bsize:>9; http.protocol; content:“HTTP/1.1”; bsize:8; http.host; content:“360”; bsize:>3; class…...

【电路笔记】-C类放大器

C类放大器 文章目录 C类放大器1、概述2、C类放大介绍3、C类放大器的功能4、C 类放大器的效率5、C类放大器的应用:倍频器6、总结1、概述 尽管存在差异,但我们在之前有关 A 类、B 类和 AB 类放大器的文章中已经看到,这三类放大器是线性或部分线性的,因为它们在放大过程中再现…...

c++语法之函数重载

引例 我们在C语言里面写add函数的时候&#xff0c;只能支持一种类型的相加&#xff0c;除非我们创建多个add函数&#xff1a; 但是这样写并不方便&#xff0c;于是就有了c的函数重载。 函数重载 函数重载就是可以将多个参数类型、顺序、数量不同&#xff0c;实现逻辑相同的函…...

EtherCAT主站IGH-- 11 -- IGH之fmmu_config.h/c文件解析

EtherCAT主站IGH-- 11 -- IGH之fmmu_config.h/c文件解析 0 预览一 该文件功能`fmmu_config.c` 文件功能函数预览二 函数功能介绍1. `ec_fmmu_config_init`2. `ec_fmmu_set_domain_offset_size`3. `ec_fmmu_config_page`示例用法示例详细说明三 h文件翻译四 c文件翻译该文档修改…...

如何使用IDEA快速清理无效代码(荣耀典藏版)

大家好&#xff0c;我是月夜枫。 今天分享一下IDEA中很有实用价值的Analyze&#xff0c;那么Analyze是用来做什么的呢&#xff1f; 主要用来清理没有引用的代码&#xff0c;包括方法、实体类以及没有使用的Mapper和Service等。 为了是项目更加整洁&#xff0c;可以使用Idea中…...

ELK优化之Filebeat部署

目录 1.安装配置Nginx 2.安装 Filebeat 3.设置 filebeat 的主配置文件 4.修改Logstash配置 5.启动配置 6.kibana验证 主机名ip地址主要软件es01192.168.9.114ElasticSearches02192.168.9.115ElasticSearches03192.168.9.116ElasticSearch、Kibananginx01192.168.9.113ng…...

蝙蝠优化算法(Bat Algorithm,BA)及其Python和MATLAB实现

蝙蝠优化算法&#xff08;Bat Algorithm&#xff0c;简称BA&#xff09;是一种基于蝙蝠群体行为的启发式优化算法&#xff0c;由Xin-She Yang于2010年提出。该算法模拟了蝙蝠捕食时在探测目标、适应环境和调整自身位置等过程中的行为&#xff0c;通过改进搜索过程来实现优化问题…...

vscode运行java中文乱码,引发的mac配置问题

文章目录 问题 vscode 安装 java环境之后 public class Main{ public static void main(String[] args) { System.out.println(“哈哈”); } } ➜ .leetcode cd “/Users/leesin/.leetcode/.vscode/” && javac -encoding utf-8 Main.java && java Main &am…...

MySQL之备份与恢复(五)

备份与恢复 备份数据 符号分隔文件备份 可以使用SQL命令SELECT INTO OUTFILE以符号分隔文件格式创建数据的逻辑备份。(可以用mysqldump的 --tab选项导出到符号分隔文件中)。符号分隔文件包含以ASCII展示的原始数据&#xff0c;没有SQL、注释和列名。下面是一个导出为逗号分隔…...

离线运行Llama3:本地部署终极指南_liama2 本地部署

4月18日&#xff0c;Meta在官方博客官宣了Llama3&#xff0c;标志着人工智能领域迈向了一个重要的飞跃。经过笔者的个人体验&#xff0c;Llama3 8B效果已经超越GPT-3.5&#xff0c;最为重要的是&#xff0c;Llama3是开源的&#xff0c;我们可以自己部署&#xff01; 本文和大家…...

【YOLO8系列】(二)YOLOv8环境配置,手把手嘴对嘴保姆教学

目录 一. 准备环境 1.Anaconda下载 2.创建yolov8虚拟环境 3.pytorch安装 4.CUDA下载 5.CUDNN下载 二、yolov8模型下载 1.clone模型 2.pycharm配置 ①解释器配置 ②终端配置 3.安装必要库 4.下载训练模型 三、 环境验证 四、总结 YOLOv8 是 YOLO 系列最新的目标…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中&#xff0c;高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术&#xff0c;实现年省电费15%-60%&#xff0c;且不改动原有装备、安装快捷、…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...