当前位置: 首页 > news >正文

LLM-阿里云 DashVector + ModelScope 多模态向量化实时文本搜图实战总结

文章目录

  • 前言
  • 步骤
    • 图片数据Embedding入库
    • 文本检索
  • 完整代码

前言

本文使用阿里云的向量检索服务(DashVector),结合 ONE-PEACE多模态模型,构建实时的“文本搜图片”的多模态检索能力。整体流程如下:
image.png

  1. 多模态数据Embedding入库。通过ONE-PEACE模型服务Embedding接口将多种模态的数据集数据转化为高维向量。
  2. 多模态Query检索。基于ONE-PEACE模型提供的多模态Embedding能力,我们可以自由组合不同模态的输入,例如单文本、文本+音频、音频+图片等多模态输入,获取Embedding向量后通过DashVector跨模态检索相似结果。

前提条件

  • 开通灵积模型服务,并获得API-KEY:开通DashScope并创建API-KEY
  • 开通向量检索服务:请参见开通服务。
  • 创建向量检索服务API-KEY:请参见API-KEY管理。

环境准备

# 安装 dashscope 和 dashvector sdk
pip3 install dashscope dashvector# 显示图片
pip3 install Pillow

数据准备

说明
由于DashScope的ONE-PEACE模型服务当前只支持URL形式的图片、音频输入,因此需要将数据集提前上传到公共网络存储(例如 oss/s3),并获取对应图片、音频的url地址列表。

步骤

图片数据Embedding入库

我使用了阿里云的 OSS 保存了图片,通过 OSS Browser 界面获取图片外部可以访问的 URL:
image.png
image.png
这个 URL 应该也可以通过接口的方式获取,这个还没有研究,感兴趣的小伙伴可以尝试用接口批量获取下,获取这个 URL 的目的是为了让阿里云的 DashScope 服务能够读取到该图片进行 embedding 保存到 DashVector 向量数据库中。
获取到该URL 后,就将该URL 写入到我们的 imagenet1k-urls.txt 文件中,等会我们的代码会读取该文件进行嵌入:
image.png
执行嵌入的代码如下(我在后边会将完整代码和目录结构贴出,这里只贴出嵌入的代码):

    def index_image(self):# 创建集合:指定集合名称和向量维度, ONE-PEACE 模型产生的向量统一为 1536 维collection = self.vector_client.get(self.vector_collection_name)if not collection:rsp = self.vector_client.create(self.vector_collection_name, 1536)collection = self.vector_client.get(self.vector_collection_name)if not rsp:raise DashVectorException(rsp.code, reason=rsp.message)# 调用 dashscope ONE-PEACE 模型生成图片 Embedding,并插入 dashvectorwith open(self.IMAGENET1K_URLS_FILE_PATH, 'r') as file:for i, line in enumerate(file):url = line.strip('\n')input = [{'image': url}]result = MultiModalEmbedding.call(model=MultiModalEmbedding.Models.multimodal_embedding_one_peace_v1,input=input,api_key=os.environ["DASHSCOPE_API_KEY"],auto_truncation=True)if result.status_code != 200:print(f"ONE-PEACE failed to generate embedding of {url}, result: {result}")continueembedding = result.output["embedding"]collection.insert(Doc(id=str(i),vector=embedding,fields={'image_url': url}))if (i + 1) % 100 == 0:print(f"---- Succeeded to insert {i + 1} image embeddings")
  • 读取 IMAGENET1K_URLS_FILE_PATH中的图片 URL,然后执行请求 DashScope 请求,将我们的图片向量化存储。
  • 在插入向量数据库的时候带上了图片的 URL 作为向量属性。

执行完毕后可以通过向量检索服务控制台,查看下向量数据:
image.png
image.png

文本检索

通过文本检索向量数据库中的数据,我输入cat检索出三张(我们代码中设置的 topk=3)图片, 可以查看下效果,两张是猫的照片,但是有一张是狗的照片:
image.png
这是因为这张狗和猫是存在相似性的,接下来我们将topk设置为2,理论上就检测不出这个狗了,我们看下效果,果然就没有狗了:
image.png
之所以会出现狗,是因为我往向量库中存入了4张动物图片,2张猫的,2张狗的,如果我们的 topk 设置为3,就会多检测出一张狗的。

完整代码

multi_model.py文件如下:

import osimport dashscope
from dashvector import Client, Doc, DashVectorException
from dashscope import MultiModalEmbedding
from dashvector import Client
from urllib.request import urlopen
from PIL import Imageclass DashVectorMultiModel:def __init__(self):# 我们需要同时开通 DASHSCOPE_API_KEY 和 DASHVECTOR_API_KEYos.environ["DASHSCOPE_API_KEY"] = ""os.environ["DASHVECTOR_API_KEY"] = ""os.environ["DASHVECTOR_ENDPOINT"] = ""dashscope.api_key = os.environ["DASHSCOPE_API_KEY"]# 由于 ONE-PEACE 模型服务当前只支持 url 形式的图片、音频输入,因此用户需要将数据集提前上传到# 公共网络存储(例如 oss/s3),并获取对应图片、音频的 url 列表。# 该文件每行存储数据集单张图片的公共 url,与当前python脚本位于同目录下self.IMAGENET1K_URLS_FILE_PATH = "imagenet1k-urls.txt"self.vector_client = self.init_vector_client()self.vector_collection_name = 'imagenet1k_val_embedding'def init_vector_client(self):return Client(api_key=os.environ["DASHVECTOR_API_KEY"],endpoint=os.environ["DASHVECTOR_ENDPOINT"])def index_image(self):# 创建集合:指定集合名称和向量维度, ONE-PEACE 模型产生的向量统一为 1536 维collection = self.vector_client.get(self.vector_collection_name)if not collection:rsp = self.vector_client.create(self.vector_collection_name, 1536)collection = self.vector_client.get(self.vector_collection_name)if not rsp:raise DashVectorException(rsp.code, reason=rsp.message)# 调用 dashscope ONE-PEACE 模型生成图片 Embedding,并插入 dashvectorwith open(self.IMAGENET1K_URLS_FILE_PATH, 'r') as file:for i, line in enumerate(file):url = line.strip('\n')input = [{'image': url}]result = MultiModalEmbedding.call(model=MultiModalEmbedding.Models.multimodal_embedding_one_peace_v1,input=input,api_key=os.environ["DASHSCOPE_API_KEY"],auto_truncation=True)if result.status_code != 200:print(f"ONE-PEACE failed to generate embedding of {url}, result: {result}")continueembedding = result.output["embedding"]collection.insert(Doc(id=str(i),vector=embedding,fields={'image_url': url}))if (i + 1) % 100 == 0:print(f"---- Succeeded to insert {i + 1} image embeddings")def show_image(self, image_list):for img in image_list:# 注意:show() 函数在 Linux 服务器上可能需要安装必要的图像浏览器组件才生效# 建议在支持 jupyter notebook 的服务器上运行该代码img.show()def text_search(self, input_text):# 获取上述入库的集合collection = self.vector_client.get('imagenet1k_val_embedding')# 获取文本 query 的 Embedding 向量input = [{'text': input_text}]result = MultiModalEmbedding.call(model=MultiModalEmbedding.Models.multimodal_embedding_one_peace_v1,input=input,api_key=os.environ["DASHSCOPE_API_KEY"],auto_truncation=True)if result.status_code != 200:raise Exception(f"ONE-PEACE failed to generate embedding of {input}, result: {result}")text_vector = result.output["embedding"]# DashVector 向量检索rsp = collection.query(text_vector, topk=2)image_list = list()for doc in rsp:img_url = doc.fields['image_url']img = Image.open(urlopen(img_url))image_list.append(img)return image_listif __name__ == '__main__':a = DashVectorMultiModel()# 执行 embedding 操作a.index_image()# 文本检索text_query = "Traffic light"a.show_image(a.text_search(text_query))
  • 开通 DashScope 和 DashVector 的 API KEY 后替换上边的DASHSCOPE_API_KEY,DASHVECTOR_API_KEY,DASHVECTOR_ENDPOINT

代码目录结构如下,将 txt 文件和py 文件放在同级目录下:
image.png


补充说明

  • 使用本地图片:我是将图片上传至 OSS 的,也可以使用本地的图片文件,将 txt 中的文件路径替换为本地图片路径,如下:

    image.png

  • 如果使用本地图片的话,我们就得修改下上边的代码了,修改下边的代码:

    # 将 img = Image.open(urlopen(img_url)) 替换为下边的代码
    img = Image.open(img_url)
    

相关文章:

LLM-阿里云 DashVector + ModelScope 多模态向量化实时文本搜图实战总结

文章目录 前言步骤图片数据Embedding入库文本检索 完整代码 前言 本文使用阿里云的向量检索服务(DashVector),结合 ONE-PEACE多模态模型,构建实时的“文本搜图片”的多模态检索能力。整体流程如下: 多模态数据Embedd…...

CentOS7安装部署git和gitlab

安装Git 在Linux系统中是需要编译源码的,首先下载所需要的依赖: yum install -y curl-devel expat-devel gettext-devel openssl-devel zlib-devel gcc perl-ExtUtils-MakeMaker方法一 下载: wget https://mirrors.edge.kernel.org/pub/s…...

《昇思25天学习打卡营第16天|基于MindNLP+MusicGen生成自己的个性化音乐》

MindNLP 原理 MindNLP 是一个自然语言处理(NLP)框架,用于处理和分析文本数据。 文本预处理:包括去除噪声、分词、词性标注、命名实体识别等步骤,使文本数据格式化并准备好进行进一步分析。 特征提取:将文…...

算法学习day10(贪心算法)

贪心算法:由局部最优->全局最优 贪心算法一般分为如下四步: 将问题分解为若干个子问题找出适合的贪心策略求解每一个子问题的最优解将局部最优解堆叠成全局最优解 一、摆动序列(理解难) 连续数字之间的差有正负的交替&…...

卡尔曼滤波Kalman Filter零基础入门到实践(上部)

参考视频:入门(秒懂滤波概要)_哔哩哔哩_bilibili 一、入门 1.引入 假设超声波距离传感器每1ms给单片机发数据。 理论数据为黑点, 测量数据曲线为红线,引入滤波后的数据为紫线 引入滤波的作用是过滤数据中的噪声&a…...

力扣-dfs

何为深度优先搜索算法? 深度优先搜索算法,即DFS。就是找一个点,往下搜索,搜索到尽头再折回,走下一个路口。 695.岛屿的最大面积 695. 岛屿的最大面积 题目 给你一个大小为 m x n 的二进制矩阵 grid 。 岛屿 是由一些相…...

keepalived高可用集群

一、keepalived: 1.keepalive是lvs集群中的高可用架构,只是针对调度器的高可用,基于vrrp来实现调度器的主和备,也就是高可用的HA架构;设置一台主调度器和一台备调度器,在主调度器正常工作的时候&#xff0…...

文献翻译与阅读《Integration Approaches for Heterogeneous Big Data: A Survey》

CYBERNETICS AND INFORMATION TECHNOLOGIES’24 论文原文下载地址:原文下载 目录 1 引言 2 大数据概述 3 大数据的异构性 4 讨论整合方法 4.1 大数据仓库(BDW) 4.2 大数据联盟(BDF) 5 DW 和 DF 方法的比较、分…...

应用最优化方法及MATLAB实现——第3章代码实现

一、概述 在阅读最优方法及MATLAB实现后,想着将书中提供的代码自己手敲一遍,来提高自己对书中内容理解程度,巩固一下。 这部分内容主要针对第3章的内容,将其所有代码实现均手敲一遍,中间部分代码自己根据其公式有些许的…...

django的增删改查,排序,分组等常用的ORM操作

Django 的 ORM(对象关系映射)提供了一种方便的方式来与数据库进行交互。 1. Django模型 在 myapp/models.py 中定义一个示例模型:python from django.db import modelsclass Person(models.Model):name models.CharField(max_length100)age…...

Leetcode Java学习记录——树、二叉树、二叉搜索树

文章目录 树的定义树的遍历中序遍历代码 二叉搜索树 常见二维数据结构:树/图 树和图的区别就在于有没有环。 树的定义 public class TreeNode{public int val;public TreeNode left,right;public TreeNode(int val){this.val val;this.left null;this.right nu…...

华为HCIP Datacom H12-821 卷30

1.单选题 以下关于OSPF协议报文说法错误的是? A、OSPF报文采用UDP报文封装并且端口号是89 B、OSPF所有报文的头部格式相同 C、OSPF协议使用五种报文完成路由信息的传递 D、OSPF所有报文头部都携带了Router-ID字段 正确答案:A 解析: OSPF用IP报文直接封装协议报文,…...

element el-table实现表格动态增加/删除/编辑表格行,带校验规则

本篇文章记录el-table增加一行可编辑的数据列,进行增删改。 1.增加空白行 直接在页面mounted时对form里面的table列表增加一行数据,直接使用push() 方法增加一列数据这个时候也可以设置一些默认值。比如案例里面的 产品件数 。 mounted() {this.$nextTi…...

QT调节屏幕亮度

1、目标 利用QT实现调节屏幕亮度功能:在无屏幕无触控时,将屏幕亮度调低,若有触控则调到最亮。 2、调节亮度命令 目标装置使用嵌入式Linux系统,调节屏幕亮度的指令为: echo x > /sys/class/backlight/backlight/…...

实变函数精解【3】

文章目录 点集求导集 闭集参考文献 点集 求导集 例1 E { 1 / n 1 / m : n , m ∈ N } 1. lim ⁡ n → ∞ ( 1 / n 1 / m ) 1 / m 2. lim ⁡ n , m → ∞ ( 1 / n 1 / m ) 0 3. E ′ { 0 , 1 , 1 / 2 , 1 / 3 , . . . . } E\{1/n1/m:n,m \in N\} \\1.\lim_{n \rightar…...

JVM:SpringBoot TomcatEmbeddedWebappClassLoader

文章目录 一、介绍二、SpringBoot中TomcatEmbeddedWebappClassLoader与LaunchedURLClassLoader的关系 一、介绍 TomcatEmbeddedWebappClassLoader 是 Spring Boot 在其内嵌 Tomcat 容器中使用的一个类加载器(ClassLoader)。在 Spring Boot 应用中&#…...

蜂窝互联网接入:连接世界的无缝体验

通过Wi—Fi,人们可以方便地接入互联网,但无线局域网的覆盖范围通常只有10~100m。当我们携带笔记本电脑在外面四处移动时,并不是在所有地方都能找到可接入互联网的Wi—Fi热点,这时候蜂窝移动通信系统可以为我们提供广域…...

Sprint Boot 2 核心功能(一)

核心功能 1、配置文件 application.properties 同基础入门篇的application.properties用法一样 Spring Boot 2 入门基础 application.yaml(或application.yml) 基本语法 key: value;kv之间有空格大小写敏感使用缩进表示层级关系缩进不允…...

GitLab CI/CD实现项目自动化部署

1 GitLab CI/CD介绍 GitLab CI/CD 是 GitLab 中集成的一套用于软件开发的持续集成(Continuous Integration)、持续交付(Continuous Delivery)和持续部署(Continuous Deployment)工具。这套系统允许开发团队…...

阿里云调整全球布局关停澳洲云服务器,澳洲服务器市场如何选择稳定可靠的云服务?

近日,阿里云宣布将关停澳大利亚地域的数据中心服务,这一决定引发了全球云计算行业的广泛关注。作为阿里云的重要海外市场之一,澳洲的数据中心下架对于当地的企业和个人用户来说无疑是一个不小的挑战。那么,在阿里云调整全球布局的…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

大话软工笔记—需求分析概述

需求分析,就是要对需求调研收集到的资料信息逐个地进行拆分、研究,从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要,后续设计的依据主要来自于需求分析的成果,包括: 项目的目的…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作: 1)、切换集群 2)、切换节点 3)、切换到 apparmor 的目录 4)、执行 apparmor 策略模块 5)、修改 pod 文件 6)、…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止

<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet&#xff1a; https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时&#xff0c;可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案&#xff1a; 1. 检查电源供电问题 问题原因&#xff1a;多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序&#xff0c;以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务&#xff0c;提供稳定高效的数据处理与业务逻辑支持&#xff1b;利用 uniapp 实现跨平台前…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...