python数据可视化(6)——绘制散点图
课程学习来源:b站up:【蚂蚁学python】
【课程链接:【【数据可视化】Python数据图表可视化入门到实战】】
【课程资料链接:【链接】】
Python绘制散点图查看BMI与保险费的关系
散点图:
- 用两组数据构成多个坐标点,考察坐标点的分布,判断两变量之间是否存在某种关联或总结坐标点的分布模式
- 散点图核心的价值在于发现变量之间的关系,然后进行预测分析,做出科学的决策
实例:医疗费用个人数据集中,"身体质量指数BMI"与"个人医疗费用"两者之间的关系
数据集原地址:https://www.kaggle.com/mirichoi0218/insurance/home
1.读取保险费数据集
import pandas as pddf = pd.read_csv("../DATA_POOL/PY_DATA/ant-learn-visualization-master/datas/insurance/insurance.csv")df.head(10)
| age | sex | bmi | children | smoker | region | charges | |
|---|---|---|---|---|---|---|---|
| 0 | 19 | female | 27.900 | 0 | yes | southwest | 16884.92400 |
| 1 | 18 | male | 33.770 | 1 | no | southeast | 1725.55230 |
| 2 | 28 | male | 33.000 | 3 | no | southeast | 4449.46200 |
| 3 | 33 | male | 22.705 | 0 | no | northwest | 21984.47061 |
| 4 | 32 | male | 28.880 | 0 | no | northwest | 3866.85520 |
| 5 | 31 | female | 25.740 | 0 | no | southeast | 3756.62160 |
| 6 | 46 | female | 33.440 | 1 | no | southeast | 8240.58960 |
| 7 | 37 | female | 27.740 | 3 | no | northwest | 7281.50560 |
| 8 | 37 | male | 29.830 | 2 | no | northeast | 6406.41070 |
| 9 | 60 | female | 25.840 | 0 | no | northwest | 28923.13692 |
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):# Column Non-Null Count Dtype
--- ------ -------------- ----- 0 age 1338 non-null int64 1 sex 1338 non-null object 2 bmi 1338 non-null float643 children 1338 non-null int64 4 smoker 1338 non-null object 5 region 1338 non-null object 6 charges 1338 non-null float64
dtypes: float64(2), int64(2), object(3)
memory usage: 73.3+ KB
2.pyecharts绘制散点图
# 将数据按照bmi升序排列
df.sort_values(by = "bmi", inplace = True)# inplace =true 表示直接更改df本身的数据
df.head()
| age | sex | bmi | children | smoker | region | charges | |
|---|---|---|---|---|---|---|---|
| 172 | 18 | male | 15.960 | 0 | no | northeast | 1694.79640 |
| 428 | 21 | female | 16.815 | 1 | no | northeast | 3167.45585 |
| 1226 | 38 | male | 16.815 | 2 | no | northeast | 6640.54485 |
| 412 | 26 | female | 17.195 | 2 | yes | northeast | 14455.64405 |
| 1286 | 28 | female | 17.290 | 0 | no | northeast | 3732.62510 |
bmi = df["bmi"].to_list()
charges = df["charges"].to_list()
import pyecharts.options as opts
from pyecharts.charts import Scatter
scatter = (Scatter().add_xaxis(xaxis_data = bmi).add_yaxis(series_name = "",y_axis = charges,symbol_size = 4,label_opts = opts.LabelOpts(is_show = False)).set_global_opts(xaxis_opts = opts.AxisOpts(type_ = "value"),yaxis_opts = opts.AxisOpts(type_ = "value"),title_opts = opts.TitleOpts(title = "(BMI-保险费)关系图", pos_left = "center"))
)
from IPython.display import HTML# 同上,读取 HTML 文件内容
# bar.render()的值是一个路径,以字符串形式表示
with open(scatter.render(), 'r', encoding='utf-8') as file:html_content = file.read()# 直接在 JupyterLab 中渲染 HTML
HTML(html_content)

相关文章:
python数据可视化(6)——绘制散点图
课程学习来源:b站up:【蚂蚁学python】 【课程链接:【【数据可视化】Python数据图表可视化入门到实战】】 【课程资料链接:【链接】】 Python绘制散点图查看BMI与保险费的关系 散点图: 用两组数据构成多个坐标点,考察…...
【人工智能】Transformers之Pipeline(二):自动语音识别(automatic-speech-recognition)
目录 一、引言 二、自动语音识别(automatic-speech-recognition) 2.1 概述 2.2 技术原理 2.2.1 whisper模型 2.2.2 Wav2vec 2.0模型 2.3 pipeline参数 2.3.1 pipeline对象实例化参数 2.3.2 pipeline对象使用参数…...
Mysql-错误处理: Found option without preceding group in config file
1、问题描述 安装MYSQL时,在cmd中“初始化”数据库时,输入命令: mysqld --initialize --consolecmd报错: D:\mysql-5.7.36-winx64\bin>mysql --initialize --console mysql: [ERROR] Found option without preceding group …...
[iOS]内存分区
[iOS]内存分区 文章目录 [iOS]内存分区五大分区栈区堆区全局区常量区代码区验证内存使用注意事项总结 函数栈堆栈溢出栈的作用 参考博客 在iOS中,内存主要分为栈区、堆区、全局区、常量区、代码区五大区域 还记得OC是C的超类 所以C的内存分区也是一样的 iOS系统中&a…...
sklearn基础教程:掌握机器学习入门的钥匙
sklearn基础教程:掌握机器学习入门的钥匙 在数据科学和机器学习的广阔领域中,scikit-learn(简称sklearn)无疑是最受欢迎且功能强大的库之一。它提供了简单而高效的数据挖掘和数据分析工具,让研究人员、数据科学家以及…...
【unity实战】使用unity制作一个红点系统
前言 注意,本文是本人的学习笔记记录,这里先记录基本的代码,后面用到了再回来进行实现和整理 素材 https://assetstore.unity.com/packages/2d/gui/icons/2d-simple-ui-pack-218050 框架: RedPointSystem.cs using System.…...
开发指南046-机构树控件
为了简化编程,平台封装了很多前端组件。机构树就是常用的组件之一。 基本用法: import QlmOrgTree from /qlmcomponents/tree/QlmOrgTree <QlmOrgTree></QlmOrgTree> 功能: 根据权限和控制参数显示机构树。机构树数据来源于核…...
SpringBatch文件读写ItemWriter,ItemReader使用详解
SpringBatch文件读写ItemWriter,ItemReader使用详解 1. ItemReaders 和 ItemWriters1.1. ItemReader1.2. ItemWriter1.3. ItemProcessor 2.FlatFileItemReader 和 FlatFileItemWriter2.1.平面文件2.1.1. FieldSet 2.2. FlatFileItemReader2.3. FlatFileItemWriter 3…...
如何评估AI模型:评估指标的分类、方法及案例解析
如何评估AI模型:评估指标的分类、方法及案例解析 引言第一部分:评估指标的分类第二部分:评估指标的数学基础第三部分:评估指标的选择与应用第四部分:评估指标的局限性第五部分:案例研究第六部分:…...
程序员学CFA——经济学(七)
经济学(七) 汇率外汇市场外汇市场的功能外汇市场的参与者卖方买方 汇率的计算汇率报价基础货币与计价货币直接报价与间接报价外汇报价习惯 名义汇率和实际汇率货币的升值与贬值交叉汇率计算即期汇率与远期汇率即期汇率与远期汇率的概念远期升水/贴水远期…...
imx335帧率改到10fps的方法
验证: imx335.c驱动默认的帧率是30fps,要将 IMX335 的帧率更改为 10fps,需要调整与帧率相关的参数。FPS(frames per second,每秒帧数)通常由 sensor 的曝光时间(exposure time)和垂直总时间(VTS,Vertical Total Size)共同决定。VTS 定义了 sensor 完成一帧图像采集…...
Large Language Model系列之二:Transformers和预训练语言模型
Large Language Model系列之二:Transformers和预训练语言模型 1 Transformer模型 Transformer模型是一种基于自注意力机制的深度学习模型,它最初由Vaswani等人在2017年的论文《Attention Is All You Need》中提出,主要用于机器翻译任务。随…...
java后端项目启动失败,解决端口被占用问题
报错信息: Web server failed to start . Port 8020 was already in use. 1、查看端口号 netstat -ano | findstr 端口号 2、终止进程 taskkill /F /PID 进程ID 举例:关闭8020端口...
PostgreSQL安装/卸载(CentOS、Windows)
说明:PostgreSQL与MySQL一样,是一款开源免费的数据库技术,官方口号:The World’s Most Advanced Open Source Relational Database.(世界上最先进的开源关系数据库),本文介绍如何在Windows、Cen…...
OutOfMemoryError异常OOM排查
目录 参考工具MAT(Memory Analyzer)一、产生原因二、测试堆溢出 java.lang.OutOfMemoryError: Java heap space测试代码运行手动导出dump文件mat排查打开dump文件查看Leak Suspects(泄露疑点)参考 【JVM】八、OOM异常的模拟 MAT工具分析Dump文件(大对象定位) 用arthas排…...
【Python】Arcpy将excel点生成shp文件
根据excel点经纬度数据,生成shp,参考博主的代码,进行了修改,在属性表中保留excel中的数据。 参考资料:http://t.csdnimg.cn/OleyT 注意修改以下两句中的数字。 latitude float(row[1]) longitude float(row[2])imp…...
torch之从.datasets.CIFAR10解压出训练与测试图片 (附带网盘链接)
前言 从官网上下载的是长这个样子的 想看图片,咋办咧,看下面代码 import torch import torchvision import numpy as np import os import cv2 batch_size 50transform_predict torchvision.transforms.Compose([torchvision.transforms.ToTensor(),…...
什么ISP?什么是IAP?
做单片机开发的工程师经常会听到两个词:ISP和IAP,但新手往往对这两个概念不是很清楚,今天就来和大家聊聊什么是ISP,什么是IAP? 一、ISP ISP的全称是:In System Programming,即在系统编程&…...
外卖霸王餐系统怎么快速盈利赚钱?
微客云外卖霸王餐系统,作为近年来外卖行业中的一股新兴力量,以其独特的商业模式和营销策略,迅速吸引了大量消费者的目光。该系统通过提供显著的折扣和返利,让顾客能够以极低的价格甚至免费享受到美味的外卖,同时&#…...
Linux环境下安装Nodejs
Linux环境下安装Nodejs 下载地址:https://nodejs.org/zh-cn/download/package-manager 一、使用压缩包自定义安装 上述链接下载好对应版本的软件包后,我存放到 /evn/nodejs 目录下(根据自己实际情况设置) 设置软链接 sudo ln…...
web vue 项目 Docker化部署
Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage):…...
深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...
TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...
Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...
【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...
cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
Qt Http Server模块功能及架构
Qt Http Server 是 Qt 6.0 中引入的一个新模块,它提供了一个轻量级的 HTTP 服务器实现,主要用于构建基于 HTTP 的应用程序和服务。 功能介绍: 主要功能 HTTP服务器功能: 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...
《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...
关于 WASM:1. WASM 基础原理
一、WASM 简介 1.1 WebAssembly 是什么? WebAssembly(WASM) 是一种能在现代浏览器中高效运行的二进制指令格式,它不是传统的编程语言,而是一种 低级字节码格式,可由高级语言(如 C、C、Rust&am…...
