最新站长工具箱源码,拥有几百个功能,安装教程
最新站长工具箱源码,拥有几百个功能,安装教程
在 Docker 上运行
docker run -e LAFREGION=CN -e APPLANG=zh_CN --name my-miaoda -v ~/.miaoda-docker:/root/.miaoda -d -p 0.0.0.0:39899:39899 codegentoolbox/laftools-linux-x64:latest
NOTE:
默认端口设置为39899,您可以根据需要进行调整。
当有新版本更新时,请手动拉取最新Docker镜像。
默认会将/.miaoda挂载到/.miaoda-docker,为避免应用数据丢失,建议保留此映射设置。
Docker Images:
Docker Images:
Docker Hub - laftools-linux-x64
Docker Hub - laftools-arm64-x64
设置系统环境
为了简单起见,假设您已将此仓库克隆到 Windows 上的 C:\Usersjerry\project\laftools-repo
或 Linux/MacOS 上的 /Users/jerry/projects/laftools-repo
,那么您应该在文件 ~/.bashrc 中声明 env 并在下面设置配置,或者只是在运行任何命令之前执行它们。
如果您使用的是 Windows 操作系统,请确保所有命令都在 git-bash 中执行,了解更多信息请参阅 贡献。除此之外,建议避免在该项目所在的文件路径中使用任何空格或非英文字符。
Env for Windows:
git config core.ignorecase false
export MDGJX_ROOT="C:\users\jerry\project\laftools-repo"
export PATH=$PATH:$MDGJX_ROOT\dev\source\windows-bin
Env for Linux/MacOS:
如您遇到permission denied问题请在命令前加sudo赋予更高权限
export MDGJX_ROOT=/users/jerry/projects/laftools-repo
编译并运行
# 安装所需的全局库
npm i -g pnpm ts-node typescript# 安装项目依赖
cd $MDGJX_ROOT && npm install -S -D --force
cd $MDGJX_ROOT/modules/web && npm install -S -D --force
cd $MDGJX_ROOT/devtools/scripts/scan && npm install -S -D --force# 运行核心服务
npm run fe-web
构建(Build)
cd pipeline
./build-all.sh
前端目录结构
/modules/web
├─ dist-example # 打包dist
├─ docker # docker
├─ public # 静态资源
├─ src # 源码 │
├─ actions # actions │
├─ components # 公共组件 │
├─ containers # 页面容器 │
├─ loadable # 业务页面 │
├─ m-types-copy # 类型定义 │
├─ meta # 页面元信息 │
├─ pages # 页面 │
├─ store # 全局store管理 │
├─ utils # 全局公共方法
├─ .eslintignore # eslint忽略集合
├─ .eslintrc.cjs # eslint ├
├─ .nvmrc # nvm node版本
├─ .prettierrc.cjs # prettier
├─ .stylelintignore # stylelint忽略集合
├─ .stylelintrc.json # stylelint配置
├─ index.html # 入口html
├─ postcss.config.cjs # postcss 配置
├─ tailwind.config.ts # tailwindcss 配置
├─ tsconfig.json # ts 编译配置
├─ vite.config.mjs # vite 配置
└─ vitest.setup.mjs # vitest 配置
相关文章:
最新站长工具箱源码,拥有几百个功能,安装教程
最新站长工具箱源码,拥有几百个功能,安装教程 在 Docker 上运行 docker run -e LAFREGIONCN -e APPLANGzh_CN --name my-miaoda -v ~/.miaoda-docker:/root/.miaoda -d -p 0.0.0.0:39899:39899 codegentoolbox/laftools-linux-x64:latestNOTE: 默认端…...

【算法/训练】:动态规划(线性DP)
一、路径类 1. 字母收集 思路: 1、预处理 对输入的字符矩阵我们按照要求将其转换为数字分数,由于只能往下和往右走,因此走到(i,j)的位置要就是从(i - 1, j)往下走&#…...
计算巨头 Azure、AWS 和 GCP 的比较
云计算领域由三大主要参与者主导:Microsoft Azure、Amazon Web Services (AWS) 和 Google Cloud Platform (GCP)。每个平台都为希望利用云提供基础设施、平台服务等的企业提供强大的功能。在本文中,我们将深入探讨这些平台之间的差异,重点关注…...
Thinkphp5跨域问题常见的处理方法
在ThinkPHP5中,处理跨域问题通常涉及配置中间件或直接在控制器中设置响应头。以下是几种常见的解决跨域问题的方法: 1. 使用中间件处理跨域 你可以创建一个中间件来专门处理跨域请求。这个中间件会检查请求的来源,并设置相应的响应头来允许…...

Matlab编程资源库(9)数据插值与曲线拟合
一、一维数据插值 在MATLAB中,实现这些插值的函数是interp1,其调用格式为: Y1interp1(X,Y,X1,method) 函数根据X,Y的值,计算函数在X1处的值。X,Y是两个等长的已知向量,分别描述采样点和样本值,X1是一个向量…...

matplotlib的科研绘图辅助
matplotlib的科研绘图辅助 趁着暑假,与和鲸科技合作了一个python绘图的教程,作为暑期夏令营的一小部分,主要内容是介绍如何使用matplotlib、pandas、seaborn和plotnine进行医学科研绘图,感兴趣的可以通过如下地址进行访问&#x…...

C++内存管理(候捷)第五讲 笔记
GNU C对allocators的描述 new_allocator 和malloc_allocator,它们都没有特别的动作,无非底部调用operator new和malloc。它们没有用内存池 区别:::operator new是可重载的 智能型的allocator,使用内存池,分一大块然后…...

谷粒商城实战笔记-63-商品服务-API-品牌管理-OSS获取服务端签名
文章目录 一,创建第三方服务模块thrid-party1,创建一个名为gulimall-third-party的模块2,nacos上创建third-party命名空间,用来管理这个服务的所有配置3,配置pom文件4,配置文件5,单元测试6&…...

详细介绍BIO、NIO、IO多路复用(select、poll、epoll)
BIO、NIO、IO多路复用 BIO(Blocking IO)NIO(Non-blocking IO) 同步非阻塞IOIO多路复用selectpollepoll Redis的IO多路复用 BIO(Blocking IO) 最基础的IO模型,当进行IO操作时,线程会被阻塞,直到操作完成。 比如read和write,通常IO…...

昇思25天学习打卡营第11天|xiaoyushao
今天分享ResNet50迁移学习。 在实际应用场景中,由于训练数据集不足,所以很少有人会从头开始训练整个网络。普遍的做法是,在一个非常大的基础数据集上训练得到一个预训练模型,然后使用该模型来初始化网络的权重参数或作为固定特征提…...

为什么样本方差(sample variance)的分母是 n-1?
样本均值与样本方差的定义 首先来看一下均值,方差,样本均值与样本方差的定义 总体均值的定义: μ 1 n ∑ i 1 n X i \mu\frac{1}{n}\sum_{i1}^{n} X_i μn1i1∑nXi 也就是将总体中所有的样本值加总除以个数,也可以叫做总…...

编解码器架构
一、定义 0、机器翻译是序列转换模型的一个核心问题, 其输入和输出都是长度可变的序列。 为了处理这种类型的输入和输出, 我们设计一个包含两个主要组件的架构: 第一个组件是一个编码器(encoder): 它接受一…...
追问试面试系列:JVM运行时数据区
hi 欢迎来到追问试面试系列之JVM运行时数据区,在面试中出现频率非常高,并且其中还存在一些误导性的面试,一定要注意。 什么误导性呢?面试中,有的面试官本来是想问JVM运行时数据区,不过提问时难免有些让你觉得很不爽。比如:你说说java内存模型,还比如说说JVM内存模型,…...

React Native在移动端落地实践
在移动互联网产品迅猛发展的今天,技术的不断创新使得企业越来越注重降低成本、提升效率。为了在有限的开发资源下迅速推出高质量、用户体验好的产品,以实现公司发展,业界催生了许多移动端跨平台解决方案。这些方案不仅简化了开发流程…...

《操作系统》(学习笔记)(王道)
一、计算机系统概述 1.1 操作系统的基本概念 1.1.1 操作系统的概念 1.1.2 操作系统的特征 1.1.3 操作系统的目标和功能 1.2 操作系统的发展与分类 1.2.1 手工操作阶段(此阶段无操作系统) 1.2.2 批处理阶段(操作系统开始出现࿰…...

LabVIEW学习-LabVIEW处理带分隔符的字符串从而获取数据
带分隔符的字符串很好处理,只需要使用"分隔符字符串至一维字符串数组"函数或者"一维字符串数组至分隔符字符串"函数就可以很轻松地处理带分隔符地字符串。 这两个函数所在的位置为: 函数选板->字符串->附加字符串函数->分…...

freesql简单使用操作mysql数据库
参考:freesql中文官网指南 | FreeSql 官方文档 这两天准备做一个测试程序,往一个系统的数据表插入一批模拟设备数据,然后还要模拟设备终端发送数据包,看看系统的承压能力。 因为系统使用的第三方框架中用到了freesql,…...
使用Java和Spring Retry实现重试机制
使用Java和Spring Retry实现重试机制 大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!今天,我们将探讨如何在Java中使用Spring Retry来实现重试机制。重试机制在处理临时性故障和提高系统稳…...
Linux Vim教程(十):自定义配置与插件管理
目录 1. 概述 2. Vim 配置文件 2.1 .vimrc 文件 2.2 .gvimrc 文件 3. 自定义配置 3.1 自定义快捷键 3.2 自动命令 3.3 函数定义 4. 插件管理 4.1 插件管理工具 4.1.1 安装 vim-plug 4.1.2 配置 vim-plug 4.1.3 安装插件 4.2 常用插件 4.2.1 NERDTree 4.2.2 Fzf…...

代理协议解析:如何根据需求选择HTTP、HTTPS或SOCKS5?
代理IP协议是一种网络代理技术,可以实现隐藏客户端IP地址、加速网站访问、过滤网络内容、访问内网资源等功能。常用的IP代理协议主要有Socks5代理、HTTP代理、HTTPS代理这三种。代理IP协议主要用于分组交换计算机通信网络的互联系统中使用,只负责数据的路…...

网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...

Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...

定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)
可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...

AI,如何重构理解、匹配与决策?
AI 时代,我们如何理解消费? 作者|王彬 封面|Unplash 人们通过信息理解世界。 曾几何时,PC 与移动互联网重塑了人们的购物路径:信息变得唾手可得,商品决策变得高度依赖内容。 但 AI 时代的来…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...

面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...