【C语言】一篇让你彻底吃透(结构体与结构体位段)
本章重点
主要讲解结构体和位移动的使用和定义与声明,并且结构体和位段在内存中是如何存储的。
文章目录
- 结构体
- 结构体类型的声明
- 结构体特殊的声明
- 结构体变量的定义和初始化
- 结构体成员的访问
- 结构的自引用
- 结构体内存对齐
- 结构体传参
- 位段
- 什么是位段
- 位段的内存分配
- 位段的跨平台问题
结构体
结构体类型的声明
结构是一些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量。
例如用结构体描述一个学生:
struct Stu
{//结构体成员变量char name[20];//名字int age;//年龄char sex[5];//性别char id[20];//学号
}; //分号不能丢
- struct 结构体关键字
- stu结构体标签 (标签可以自己随便起)
- struct stu - 结构体类型
- 结构的成员可以是标量、数组、指针,甚至是其他结构体。
结构体特殊的声明
在声明结构的时候,可以不完全的声明,但是这样只能调用一次。
匿名结构体类型
只能调用一次,因为没有结构体标签
//匿名结构体类型 struct {int a;char b;float c; }x; //(但是这样写只能调用一次x,因为没有结构体标签)
结构体变量的定义和初始化
有了结构体类型,那如何定义变量和初始化呢,其实很简单。
- 结构体定义:
struct stu
{char name[20];//名字int age;//年龄char sex[5];//性别char id[20];//学号
}s1,s2,s3; 全局变量的定义struct stu s4; 全局变量的定义int main()
{struct stu s5; 局部变量定义struct stu s6; 局部变量定义return 0;
}
如果结构体名字过长,我们也可以typedef一下,但是typedef时注意,想在此地方加全局变量是不允许的,如果此时想要创造全局变量应该像上代码s4一样创造。
- 结构体初始化
struct stu
{char name[20];//名字int age;//年龄char sex[5];//性别char id[20];//学号
}s1 = { "wangwu",25,"sex","2022333" }; struct stu s1 = { "lihua",18,"sex","2022111" }; //全局变量的初始化int main()
{struct stu s2 = { "lisi",20,"sex","2022222" };//局部变量初始化return 0;
}
结构体成员的访问
结构体变量如何访问成员?
结构变量的成员是通过点操作符(.)访问的。点操作符接受两个操作数。
结构变量的成员也可以通过->箭头来访问。
那(.)和->到底使用那个呢?
- 点(.)是用于结构体变量访问成员
- 箭头(->)是用于结构体指针访问成员。
- 点(.)是用于结构体变量访问成员
#include<stdio.h>
struct stu
{char name[20];//名字int age;//年龄char sex[5];//性别char id[20];//学号};void test1(struct stu q1)
{//通过 . 来访问printf("%s\n", q1.name);printf("%d\n", q1.age);printf("%s\n", q1.sex);printf("%s\n", q1.id);
}int main()
{struct stu s1 = { "lisi",20,"sex","2022222" };//局部变量初始化test1(s1);return 0;
}
- 箭头(->)是用于结构体指针访问成员。
#include<stdio.h>
struct stu
{char name[20];//名字int age;//年龄char sex[5];//性别char id[20];//学号};void test2(struct stu* q1)
{//通过 . 来访问printf("%s\n", q1->name);printf("%d\n", q1->age);printf("%s\n", q1->sex);printf("%s\n", q1->id);
}int main()
{struct stu s1 = { "lisi",20,"sex","2022222" };//局部变量初始化test2(&s1);return 0;
}
结构的自引用
在结构中包含一个类型为该结构本身的成员是否可以呢?
答案是 可以的。
但是必须写成指针的形式。如果写成以下这样是错误的,会一直套娃下去,根本不知道该结构体大小是多少
- 错误的写法
struct Node
{int data;struct Node next;
};
- 正确的写法应该写成指针的形式
struct Node
{int data;struct Node* next;
};
结构体内存对齐
我们已经掌握了结构体的基本使用了。
现在我们深入讨论一个问题:计算结构体的大小。
- 看看以下代码输出的是什么
struct S1
{int a;char c;
};int main()
{int ret = sizeof(struct S1);printf("%d\n", ret);return 0;
}
很多人一开始以为是5,但并不是的。
答案是8,那为什么呢,这就与结构体内存对齐相关了
- 如何计算结构体内存?
首先得掌握结构体的对齐规则:
- .结构体的第一个成员永远都放在0偏移处
- 从第二个成员开始,以后的每个成员都要对齐到某个(对齐数)的整数倍地址处.(取对齐数较小值)
对齐数 = 编译器默认的一个对齐数 与 该成员大小的较小值。 -
备注:
VS 环境下 默认对齐数是8
gcc 环境下 没有默认对齐数,没有默认对齐数时,对齐数就是成员自身的大小- 当成员全部存放进去后, 结构体的总大小必须是,所有成员的对齐数中最大对齐数的整数倍如果不够,则浪费空间对齐.
- 如果嵌套了结构体,嵌套的结构体成员要对齐到自己成员的最大对齐数的整数倍处,整个结构体的大小,必须是最大对齐数的整数倍,最大对齐数包含中嵌套的结构体成员中的对齐数
我们直接上练习理解
- 练习 1 (sizeof(struct S1)输出结果是什么)
struct S1
{char c1;int i;char c2;
};
printf("%d\n", sizeof(struct S1));
答案是->12

- 练习 2 (sizeof(struct S2)输出结果是什么)
struct S2
{char c1;char c2;int i;
};
printf("%d\n", sizeof(struct S2));
答案是->8

- 练习 3(sizeof(struct S3)输出结果是什么)
struct S3
{double d;char c;int i;
};
printf("%d\n", sizeof(struct S3));
答案是->16

- 练习4-结构体嵌套问题,以下输出的是什么
struct S3
{int d;char c;int i;
};struct S4
{char c1;struct S3 s3;int d;
};
printf("%d\n", sizeof(struct S4));
答案是20

为什么存在内存对齐?
大部分的参考资料都是如是说的:
- 平台原因(移植原因):
不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。- 性能原因
数据结构(尤其是栈)应该尽可能地在自然边界上对齐。
原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。总体来说:
结构体的内存对齐是拿空间来换取时间的做法。
那在设计结构体的时候,我们既要满足对齐,又要节省空间,如何做到:
让占用空间小的成员尽量集中在一起。
//例如:
struct S1
{char c1;int i;char c2;
};
struct S2
{char c1;char c2;int i;
};
S1和S2类型的成员一模一样,但是S1和S2所占空间的大小有了一些区别。
s1 内存是12个字节
s2 内存是8个字节
结构体传参
struct S
{int data[1000];int num;
};
struct S s = { {1,2,3,4}, 1000 };//结构体传参
void print1(struct S s)
{printf("%d\n", s.num);
}//结构体地址传参
void print2(struct S* ps)
{printf("%d\n", ps->num);
}int main()
{print1(s); //传结构体print2(&s); //传地址return 0;
}
上面的 print1 和 print2 函数哪个好些?
答案是:首选print2函数。
函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
如果传递一个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能的下降。结论:
结构体传参的时候,要传结构体的地址。
位段
结构体讲完就得讲讲结构体实现 位段 的能力。
什么是位段
有些数据在存储时并不需要占用一个完整的字节,只需要占用一个或几个二进制位即可。为了充分利用好内存空间,C语言又提供了一种叫做位段的数据结构
位段能够减少储存数据的位数
信息的存取一般以字节为单位
位段的声明和结构是类似的,有两个不同:
- 位段的成员必须是 int、unsigned int 或signed int 。
- 位段的成员名后边有一个冒号和一个数字。
- : 后面的数字用来限定成员变量占用的位数
- 在结构体定义时,指定某个成员变量所占用的是二进制位数(Bit)
例如:
struct A
{int _a:2;int _b:5;int _c:10;int _d:30;
};
他们虽然是int类型,在内存占32个比特位,但是 位段限制了他们所占的空间,比如a只能占2个bit,b占5个bit,c占10个bit位,d占10个bit位。
A就是一个位段类型。
那位段A的大小是多少?
printf("%d\n", sizeof(struct A));- 答案是->8 ,为什么呢?那就关于位段的内存分配了。s
位段的内存分配
- 位段的成员可以是 int unsigned int signed int 或者是 char (属于整形家族)类型
- 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。
- 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段。
struct S
{char a : 3;char b : 4;char c : 5;char d : 4;
};
int main()
{struct S s = { 0 };s.a = 10;s.b = 12;s.c = 3;s.d = 4;system("pause");
}
改代码内存空间是如何开辟的!?图解:


总结:
- vs 分配到的内存中的比特位是由右向左使用
- 分配的内存剩余的比特位不够使用时,浪费掉
位段的跨平台问题
- int 位段被当成有符号数还是无符号数是不确定的。
- 位段中最大位的数目不能确定。(16位机器最大16,32位机器最大32,写成27,在16位机器会出问题。
- 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。
- 当一个结构包含两个位段,第二个位段成员比较大,无法容纳于第一个位段剩余的位时,是舍弃剩余的位还是利用,这是不确定的
总结:
跟结构相比,位段可以达到同样的效果,但是可以很好的节省空间,但是有跨平台的问题存在。
相关文章:
【C语言】一篇让你彻底吃透(结构体与结构体位段)
本章重点 主要讲解结构体和位移动的使用和定义与声明,并且结构体和位段在内存中是如何存储的。 文章目录结构体结构体类型的声明结构体特殊的声明结构体变量的定义和初始化结构体成员的访问结构的自引用结构体内存对齐结构体传参位段什么是位段位段的内存分配位段的…...
数据结构之二叉树构建、广度/深度优先(前序、中序、后序)遍历
一、二叉树 1.1 树 说到树,我们暂时忘记学习,来看一下大自然的树: 哈哈 以上照片是自己拍的,大家凑合看看 回归正题,那么在数据结构中,树是什么呢,通过上面的图片大家也可以理解 树是一种非…...
“国产版ChatGPT”文心一言发布会现场Demo硬核复现
文章目录前言实验结果一、文学创作问题1 :《三体》的作者是哪里人?问题2:可以总结下三体的核心内容吗?如果要续写的话,可以从哪些角度出发?问题3:如何从哲学角度来进行续写?问题4:电…...
202304读书笔记|《不被定义的女孩》——做最真实最漂亮的自己,依心而行
202304读书笔记|《不被定义的女孩》——做最真实最漂亮的自己,依心而行《不被定义的女孩》作者ASEN,很棒的书。处处透露着洒脱,通透,悦己,阅世界的自由的氛围和态度! 部分节选如下: 让自己活得…...
SpringBoot帮你优雅的关闭WEB应用程序
Graceful shutdown 应用 Graceful shutdown说明 Graceful shutdown is supported with all four embedded web servers (Jetty, Reactor Netty, Tomcat, and Undertow) and with both reactive and servlet-based web applications. It occurs as part of closing the applica…...
递归与递推
递归 直白理解:函数在其内部调用自身(自己调用自己)所有递归都可以采用递归搜索树来理解递归的特点: 一般来说代码较为简短,但是理解难度大一般时间和空间消耗较大,容易产生重复计算,可能爆栈 …...
使用<style scoped>导致的样式问题
问题描述: 今天使用开源组件库TDesign的自动补全组件时,遇到了一个样式失效问题,一开始怎么也找不到问题出在哪,后面一个偶然去掉了scoped,竟然发现样式竟然正常了,具体原因不知道在哪,有大佬知…...
Elasticsearch深入理解(十八)-集群关键指标及调优指南
1、CPU使用率 CPU使用率是指在一段时间内CPU执行程序的百分比,它是衡量系统资源利用率的一种指标。 1.1 详细说明: 在Elasticsearch中,高的CPU使用率通常意味着节点正在执行大量的计算任务,这可能是因为索引和搜索操作的负载较大…...
Transformer到底为何这么牛
从注意力机制(attention)开始,近两年提及最多的就是Transformer了,那么Transformer到底是什么机制,凭啥这么牛?各个领域都能用?一文带你揭开Transformer的神秘面纱。 目录 1.深度学习࿰…...
【Spring事务】声明式事务 使用详解
个人简介:Java领域新星创作者;阿里云技术博主、星级博主、专家博主;正在Java学习的路上摸爬滚打,记录学习的过程~ 个人主页:.29.的博客 学习社区:进去逛一逛~ 声明式事务一、编程式事务二、声明式事务&…...
学习28个案例总结
学习前 对于之前遇到的问题没有及时总结,导致做什么事情都是新的一样。没有把之前学习到接触到的内容应用上。通过这次对28个案例的学习。把之前遇到的问题总结成自己的经验,在以后的开发过程中避免踩重复性的坑。多看帮助少走弯路。 学习中 对28个案例…...
刷题Java常用方法总结
刷题Java常用方法总结 文章目录刷题Java常用方法总结快速查看:静态数组 Static Array初始化instance属性length技巧Arrays.sort从小到大排序Arrays.fill填满一个数组Arrays.copyOf / arr.clone()复制一个数组(二维数组也可以)动态数组 List & Dynamic Array初始化常规 - Ar…...
大数据技术之Hive
第1章Hive基本概念1.1 Hive1.1.1 Hive的产生背景在那一年的大数据开源社区,我们有了HDFS来存储海量数据、MapReduce来对海量数据进行分布式并行计算、Yarn来实现资源管理和作业调度。但是面对海量数据和负责的业务逻辑,开发人员要编写MR来对数据进行统计…...
第33篇:Java集合类框架总结
目录 1、集合概念 2、集合与数组的区别 3、集合框架的特性 1)高性能 2)可操作...
数据结构 | 栈的中缀表达式求值
目录 什么是栈? 栈的基本操作 入栈操作 出栈操作 取栈顶元素 中缀表达式求值 实现思路 具体代码 什么是栈? 栈是一种线性数据结构,具有“先进后出”(Last In First Out, LIFO)的特点。它可以看作是一种受限的…...
vue2前端实现html导出pdf功能
1. 功能实现方案 1.html转换成canvas后生成图片导出pdf(本文选用) html转canvas插件:html2canvas是一款将HTML代码转换成Canvas的插件;canvas生成pdf:jsPDF是一个使用Javascript语言生成PDF的开源库 2.HTML代码转出…...
用 ChatGPT 辅助学好机器学习
文章目录一、前言二、主要内容🍉 CSDN 叶庭云:https://yetingyun.blog.csdn.net/ 一、前言 探索更高效的学习方法可能是有志者共同的追求,用好 ChatGPT,先行于未来。 作为一个人工智能大语言模型,ChatGPT 可以在帮助初…...
【动态规划】最长上升子序列(单调队列、贪心优化)
Halo,这里是Ppeua。平时主要更新C语言,C,数据结构算法......感兴趣就关注我吧!你定不会失望。 🌈个人主页:主页链接 🌈算法专栏:专栏链接 我会一直往里填充内容哒! &…...
海思SD3403/SS928V100开发(7)mcp2515-SPI转CAN驱动开发
1. 前言 需求: 需要一路can进行收发 分析: 根据目前使用较多的方案是使用主控端SPI接口 接入MCP2515芯片进行CAN协议转换 硬件: MCP2515->SPI2->SS928 2. Uboot开发 2.1 pinmux复用配置 2.1.1 修改uboot参数表 路径: osdrv/tools/pc/uboot_tools/ SS928V100…...
【安卓源码】SurfaceFlinger 启动及其与应用通信
1. surfaceFlinger 初始化和消息队列处理机制 surfaceflinger 的makefile 文件 /frameworks/native/services/surfaceflinger/Android.bp 235 cc_binary { 236 name: "surfaceflinger", 237 defaults: ["libsurfaceflinger_binary"], 238 i…...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...
蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...
智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...
cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...
Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...
【JavaSE】绘图与事件入门学习笔记
-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...

