当前位置: 首页 > news >正文

Milvus 实践(2) --- 2.4.x 安装,脚本分析,数据存储解析

目录

背景

Milvus2.4.x安装脚本分析

etcd组件

container_name

image

参数

注意问题

environment

volumes

实体化

command

参数

注意事项

healthcheck

参数

作用

下载

minio组件

container_name

image

参数

注意事项

environment

参数

ports

参数

注意事项

volumes

参数

实例

command

healthcheck

下载及问题处理

问题说明

处理

milvus 里的存储内容

说明

实例

standalone组件

container_name

image

command

security_opt

environment

说明

注意事项

volumes

说明

实例

healthcheck

ports

说明

depends_on

说明

下载及问题处理

整体运行

存储目的与区别

MinIO vs rdb_data

MinIO

rdb_data

两者存储的data


背景

最近,有很多网友反馈按照Milvus官网给出的docker 安装方案,只能顺利下载 etcd组件,minio 与 standalone 都下载不了。究其原因,不是你的问题,而是你懂的,老美总是这不准用,那被禁止之类的。如果你看过之前本专栏的文章,Docker & Ubuntu & Milvus 2.4 windows 详细安装攻略_milvus2.4离线rpm安装-CSDN博客 是可以全部解决问题。今天主要从milvus官方的安装脚本及遇到问题,解决思路出发进行分析。通过逐个击破,你同样能完成最新 2.4.x 的安装及调试,结合之前的架构讲解,对2.4.x 的概要及数据存储分布有实质性的理解。

Milvus2.4.x安装脚本分析

从milvus的官网透过wget 或者其他方式下载 yaml 脚本,这个过程非常简单,这里不再熬述。

yaml 整个安装脚本,非常清晰,分为两大块,一个是 service 部分,一个

相关文章:

Milvus 实践(2) --- 2.4.x 安装,脚本分析,数据存储解析

目录 背景 Milvus2.4.x安装脚本分析 etcd组件 container_name image 参数 注意问题 environment volumes 实体化 command 参数 注意事项 healthcheck 参数 作用 下载 minio组件 container_name image 参数 注意事项 environment 参数 ports 参数 注…...

【蛋疼c++】千万别用std::wifstream读取Unicode UTF16文件

上当了。 最近程序要和 Jscript / activex 脚本通信。 ActiveX这玩意,导出文件,如果是UTF8导出,会出现莫名异常:写一半直接退出。或许是系统语言设置的问题。 但是切换为utf16(unicode)导出就没有问题&a…...

[算法] 第二集 二叉树中的深度搜索

深度优先遍历(DFS,全称为 Depth First Traversal),是我们树或者图这样的数据结构中常⽤的 ⼀种遍历算法。这个算法会尽可能深的搜索树或者图的分支,直到⼀条路径上的所有节点都被遍历 完毕,然后再回溯到上…...

放弃使用外键时,sequelize 应该怎么使用?

在使用 Sequelize 时,如果想放弃使用外键,但仍然希望在模型之间建立关联,可以通过设置 constraints 选项为 false 来实现。这允许你定义模型之间的关系,而不在数据库中创建外键约束。以下是具体的实现步骤: 定义没有外…...

Microsoft GraphRAG 输出的配置信息

Microsoft GraphRAG 输出的配置信息 {"llm": {"api_key": "REDACTED, length 9","type": "oci_genai_chat","model": "cohere.command-r-plus","max_tokens": 4000,"temperature"…...

怎么判断张量的维度(形状(shape)),即如何定义行数、列数和深度的?

举一个三维张量吧 # 3行4列深度为2 const3 tf.constant([[[1,2],[3,4],[5,6],[7,8]],[[11, 12], [13, 14], [15, 16], [17, 18]],[[21, 22], [23, 24], [25, 26], [27, 28]] ],tf.float16) shape (3,4,2)--借鉴博主奶油松果的图和代码 分析形状 (3, 4, 2) 最外层的括号&…...

AI入门指南(二):算法、训练、模型、大模型是什么?

文章目录 一、前言二、算法是什么?概念实际应用 三、训练是什么?概念实际应用 四、模型是什么?概念实际应用小结 五、大模型是什么?概念大模型和小模型有什么区别?大模型分类实际应用 六、总结七、参考资料 一、前言 …...

CSS已访问链接的隐私保护

摘抄自:《CSS权威指南 第四版》 有超过十年的时间,已访问的链接可以使用任何可用的CSS属性装饰,与未访问链接没有差别。 然而,大约在2005年,有几个人通过示例揭露,通过视觉样式和简单的DOM脚本就可以判断用…...

代码练习12-排序链表

给你链表的头结点 head ,请将其按 升序 排列并返回 排序后的链表 。 归并排序算法核心步骤 归并排序核心步骤如下: 把长度为n的要排序的序列,分成两个长度为n/2的子序列;对这两个子序列,分别采用归并排序&#xff1b…...

Linux 内核源码分析---套接字

套接字通信 ISO 设计一种参考模型,定义组成网络的各个层,该模型由7层组成,称为OSI(开放 系统互连)模型如下: 应用层:网络服务与最终用户的接口; 表示层:数据的表示、安…...

vscode配置xdebug断点调试详细教程

注:环境为本地windows开发环境,编辑器为vscode,PHP集成环境工具为EServer vscode安装扩展并配置 安装PHP Debug 扩展中搜索 PHP Debug 并安装: 配置PHP Debug 1、点击扩展设置 2、在设置中,点击 setting.json 3、编…...

【人工智能】Transformers之Pipeline(八):文生图/图生图(text-to-image/image-to-image)

目录 一、引言 二、文生图/图生图(text-to-image/image-to-image) 2.1 文生图 2.2 图生图 2.3 技术原理 2.3.1 Diffusion扩散模型原理 2.3.2 Stable Diffusion扩散模型原理 2.4 文生图实战 2.4.1 SDXL 1.0 2.4.2 SD 2.0 2.5 模型排名 三、总…...

AI Agent 工程师认证-学习笔记(1)——【单Agent】ModelScope-Agent

学习链接: 【单Agent】ModelScope-Agent学习指南https://datawhaler.feishu.cn/wiki/GhOLwvAPkiSWmokjUgqc1eGonDf 手把手Agent开发开源教程(觉得不错的话可以star一下)https://github.com/datawhalechina/agent-tutorial 动手学Agent应用…...

【Python机器学习】树回归——将CART算法用于回归

要对数据的复杂关系建模,可以借用树结构来帮助切分数据,如何实现数据的切分?怎样才能知道是否已经充分切分?这些问题的答案取决于叶节点的建模方式。回归树假设叶节点是常数值,这种策略认为数据中的复杂关系可以用树结…...

前端(HTML + CSS)小兔鲜儿项目(仿)

前言 这是一个简单的商城网站,代码部分为HTML CSS 和少量JS代码 项目总览 一、头部区域 头部的 购物车 和 手机 用的是 文字图标,所以效果可以和文字一样 购物车右上角用的是绝对定位 logo用的是 h1 标签,用来提高网站搜索排名 二、banne…...

【Rust光年纪】构建高效终端用户界面:Rust库全面解析

构建优雅终端应用:深度评析六大Rust库 前言 随着Rust语言的流行和应用场景的不断扩大,对于终端操作和用户界面构建的需求也日益增长。本文将介绍一些在Rust语言中常用的终端操作库和用户界面构建库,以及它们的核心功能、使用场景、安装与配…...

鼠标滑动选中表格部分数据列(vue指令)

文章目录 代码指令代码使用代码 代码 指令代码 // 获得鼠标移动的范围 function getMoveRange(startClientX, endClientX, startClientY, endClientY) {const _startClientX Math.min(startClientX, endClientX);const _endClientX Math.max(startClientX, endClientX);con…...

“5G+Windows”推动全场景数字化升级:美格智能5G智能模组SRM930成功运行Windows 11系统

操作系统作为连接用户与数字世界的桥梁,在数字化迅速发展的时代扮演着至关重要的角色,智能设备与操作系统的协同工作,成为推动现代生活和商业效率的关键力量。其中,Windows系统以其广泛的应用基础和强大的兼容性成为全球最广泛使用…...

c语言学习,isupper()函数分析

1:isupper() 函数说明: 检查参数c,是否为大写英文字母。 2:函数原型: int isupper(int c) 3:函数参数: 参数c,为检测整数 4:返回值: 参数c是大写英文字母&…...

Adnroid 数据存储:SharedPreferences详解【SharedPreferencesUtils,SharedPreferences的ANR】

目录 1)SP是什么、如何使用,SPUtils 2)SP的流程 3)comit和apply 一、SP是什么,如何使用,SPUtils 1.1 SP是什么? SharedPreferences是Android平台提供的一种轻量级的数据存储方式,…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...

2024年赣州旅游投资集团社会招聘笔试真

2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...

1.3 VSCode安装与环境配置

进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

蓝桥杯3498 01串的熵

问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798&#xff0c; 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

#Uniapp篇:chrome调试unapp适配

chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器&#xff1a;Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

基于 TAPD 进行项目管理

起因 自己写了个小工具&#xff0c;仓库用的Github。之前在用markdown进行需求管理&#xff0c;现在随着功能的增加&#xff0c;感觉有点难以管理了&#xff0c;所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD&#xff0c;需要提供一个企业名新建一个项目&#…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...