当前位置: 首页 > news >正文

人工智能】Transformers之Pipeline(九):物体检测(object-detection)

目录​​​​​​​

一、引言 

二、物体检测(object-detection)

2.1 概述

2.2 技术原理

2.3 应用场景

2.4 pipeline参数

2.4.1 pipeline对象实例化参数

2.4.2 pipeline对象使用参数 

2.4 pipeline实战

2.5 模型排名

三、总结


一、引言 

 pipeline(管道)是huggingface transformers库中一种极简方式使用大模型推理的抽象,将所有大模型分为音频(Audio)、计算机视觉(Computer vision)、自然语言处理(NLP)、多模态(Multimodal)等4大类,28小类任务(tasks)。共计覆盖32万个模型

今天介绍CV计算机视觉的第五篇,物体检测(object-detection),在huggingface库内有2400个物体检测模型。

二、物体检测(object-detection)

2.1 概述

物体检测是计算机视觉中的经典问题之一,其任务是用框去标出图像中物体的位置,并给出物体的类别。从传统的人工设计特征加浅层分类器的框架,到基于深度学习的端到端的检测框架,物体检测一步步变得愈加成熟。

2.2 技术原理

物体检测(object-detection)的默认模型为facebook/detr-resnet-50,全称为:DEtection TRansformer(DETR)-resnet-50。其中有2个要素:

  • DEtection TRansformer (DETR):于2020年5月由Facebook AI发布于《End-to-End Object Detection with Transformers》,提出了一种基于transformer的端到端目标检测方法,相比于YOLO具有更高的准确性,但速度不及YOLO,可以应用于医疗影像等不追求实时性的目标检测场景,对于追求实时性的目标检测场景,还是得YOLO,关于YOLOv10,可以看我之前的文章。
  • ResNet-50:ResNet-50是一种深度残差网络(Residual Network),是ResNet系列中的一种经典模型。它由微软研究院的Kaiming He等人于2015年提出,被广泛应用于计算机视觉任务,如图像分类、目标检测和图像分割等。ResNet-50是一种迁移学习模型,迁移学习的核心思想是将源领域的知识迁移到目标领域中,可以采用样本迁移、特征迁移、模型迁移、关系迁移等手段。

DEtection TRansformer(DETR)主体结构:

由三个主要部分组成:

  • 用于特征提取的CNN后端(ResNet)
  • transformer编码器-解码器
  • 用于最终检测预测的前馈网络(FFN)。

后端处理输入图像并生成激活图。transformer编码器降低通道维度并应用多头自注意力和前馈网络。transformer解码器使用N个物体嵌入的并行解码,并独立预测箱子坐标和类别标签,使用物体查询。DETR利用成对关系,从整个图像上下文中受益,共同推理所有物体。

2.3 应用场景

  • 安防监控:通过分析视频流,实时识别异常行为、入侵检测、人群密度控制等。
  • 自动驾驶:识别道路中的车辆、行人、交通标志,确保行车安全。
  • 零售业:库存管理,顾客行为分析,自动结账系统中的商品识别。
  • 医疗影像分析:辅助医生识别病灶,如肿瘤、细胞结构等。
  • 农业:作物健康监测,病虫害检测。
  • 无人机应用:地形分析、目标追踪。
  • 社交媒体和相机应用:人脸识别、物体标签生成,增强用户体验。

2.4 pipeline参数

2.4.1 pipeline对象实例化参数

  • model(PreTrainedModel或TFPreTrainedModel)— 管道将使用其进行预测的模型。 对于 PyTorch,这需要从PreTrainedModel继承;对于 TensorFlow,这需要从TFPreTrainedModel继承。
  • image_processor ( BaseImageProcessor ) — 管道将使用的图像处理器来为模型编码数据。此对象继承自 BaseImageProcessor。
  • modelcardstrModelCard可选) — 属于此管道模型的模型卡。
  • frameworkstr可选)— 要使用的框架,"pt"适用于 PyTorch 或"tf"TensorFlow。必须安装指定的框架。
  • taskstr,默认为"")— 管道的任务标识符。
  • num_workersint可选,默认为 8)— 当管道将使用DataLoader(传递数据集时,在 Pytorch 模型的 GPU 上)时,要使用的工作者数量。
  • batch_sizeint可选,默认为 1)— 当管道将使用DataLoader(传递数据集时,在 Pytorch 模型的 GPU 上)时,要使用的批次的大小,对于推理来说,这并不总是有益的,请阅读使用管道进行批处理。
  • args_parser(ArgumentHandler,可选) - 引用负责解析提供的管道参数的对象。
  • deviceint可选,默认为 -1)— CPU/GPU 支持的设备序号。将其设置为 -1 将利用 CPU,设置为正数将在关联的 CUDA 设备 ID 上运行模型。您可以传递本机torch.devicestr
  • torch_dtypestrtorch.dtype可选) - 直接发送model_kwargs(只是一种更简单的快捷方式)以使用此模型的可用精度(torch.float16,,torch.bfloat16...或"auto"
  • binary_outputbool可选,默认为False)——标志指示管道的输出是否应以序列化格式(即 pickle)或原始输出数据(例如文本)进行。

2.4.2 pipeline对象使用参数 

  • imagesstrList[str]PIL.ImageList[PIL.Image]——管道处理三种类型的图像:
    • 包含指向图像的 HTTP(S) 链接的字符串
    • 包含图像本地路径的字符串
    • 直接在 PIL 中加载的图像

    管道可以接受单张图片或一批图片。一批图片中的图片必须全部采用相同的格式:全部为 HTTP(S) 链接、全部为本地路径或全部为 PIL 图片。

  • thresholdfloat可选,默认为 0.9)— 用于过滤预测掩码的概率阈值。
  • timeout可选float,默认为 None)— 等待从网络获取图像的最长时间(以秒为单位)。如果为 None,则不设置超时,并且调用可能会永远阻塞。

2.4 pipeline实战

识别http链接中的物品

采用pipeline代码如下

import os
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
os.environ["CUDA_VISIBLE_DEVICES"] = "2"from transformers import pipeline
detector = pipeline(task="object-detection",model="facebook/detr-resnet-50")
output = detector("http://images.cocodataset.org/val2017/000000039769.jpg")
print(output)
"""
[{'score': 0.9982202649116516, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960021376609802, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9954745173454285, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.99880051612854, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9986782670021057, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}]
"""

执行后,自动下载模型文件,并生成score及物体检测的box坐标:

​  

2.5 模型排名

在huggingface上,我们将物体检测(object-detection)模型按下载量从高到低排序,可以发现除了table表格相关的模型,排在第一的就是本文中介绍的detr-resnet-50和yolov10x,关于yolov10x,可以阅读我之前专门介绍yolov10的文章。

    

三、总结

本文对transformers之pipeline的物体检测(object-detection)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用计算机视觉中的物体检测(object-detection)模型。

期待您的3连+关注,如何还有时间,欢迎阅读我的其他文章:

《Transformers-Pipeline概述》

【人工智能】Transformers之Pipeline(概述):30w+大模型极简应用

《Transformers-Pipeline 第一章:音频(Audio)篇》

【人工智能】Transformers之Pipeline(一):音频分类(audio-classification)

【人工智能】Transformers之Pipeline(二):自动语音识别(automatic-speech-recognition)

【人工智能】Transformers之Pipeline(三):文本转音频(text-to-audio/text-to-speech)

【人工智能】Transformers之Pipeline(四):零样本音频分类(zero-shot-audio-classification)

《Transformers-Pipeline 第二章:计算机视觉(CV)篇》

【人工智能】Transformers之Pipeline(五):深度估计(depth-estimation)​​​​​​​

【人工智能】Transformers之Pipeline(六):图像分类(image-classification)

【人工智能】Transformers之Pipeline(七):图像分割(image-segmentation)​​​​​​​

【人工智能】Transformers之Pipeline(八):图生图(image-to-image)

【人工智能】Transformers之Pipeline(九):物体检测(object-detection)

【人工智能】Transformers之Pipeline(十):视频分类(video-classification)

【人工智能】Transformers之Pipeline(十一):零样本图片分类(zero-shot-image-classification)

【人工智能】Transformers之Pipeline(十二):零样本物体检测(zero-shot-object-detection)

《Transformers-Pipeline 第三章:自然语言处理(NLP)篇》

【人工智能】Transformers之Pipeline(十三):填充蒙版(fill-mask)

【人工智能】Transformers之Pipeline(十四):问答(question-answering)

【人工智能】Transformers之Pipeline(十五):总结(summarization)

【人工智能】Transformers之Pipeline(十六):表格问答(table-question-answering)

【人工智能】Transformers之Pipeline(十七):文本分类(text-classification)

【人工智能】Transformers之Pipeline(十八):文本生成(text-generation)

【人工智能】Transformers之Pipeline(十九):文生文(text2text-generation)

【人工智能】Transformers之Pipeline(二十):令牌分类(token-classification)

【人工智能】Transformers之Pipeline(二十一):翻译(translation)

【人工智能】Transformers之Pipeline(二十二):零样本文本分类(zero-shot-classification)

《Transformers-Pipeline 第四章:多模态(Multimodal)篇》

【人工智能】Transformers之Pipeline(二十三):文档问答(document-question-answering)

【人工智能】Transformers之Pipeline(二十四):特征抽取(feature-extraction)

【人工智能】Transformers之Pipeline(二十五):图片特征抽取(image-feature-extraction)

【人工智能】Transformers之Pipeline(二十六):图片转文本(image-to-text)

【人工智能】Transformers之Pipeline(二十七):掩码生成(mask-generation)

【人工智能】Transformers之Pipeline(二十八):视觉问答(visual-question-answering)

相关文章:

人工智能】Transformers之Pipeline(九):物体检测(object-detection)

目录​​​​​​​ 一、引言 二、物体检测(object-detection) 2.1 概述 2.2 技术原理 2.3 应用场景 2.4 pipeline参数 2.4.1 pipeline对象实例化参数 2.4.2 pipeline对象使用参数 2.4 pipeline实战 2.5 模型排名 三、总结 一、引言 pipel…...

[SWPUCTF 2021 新生赛]easy_md5

分析代码:1.包含flag2.php 2.GET传name,POST传password $name ! $password && md5($name) md5($password) 属于MD5绕过中的php 弱类型绕过 解题方法: 方法一 import requests# 网站的URL url "http://node7.anna.nssctf.cn:28026&q…...

Redis面试题大全

文章目录 Redis有哪几种基本类型Redis为什么快?为什么Redis6.0后改用多线程?什么是热key吗?热key问题怎么解决?什么是热Key?解决热Key问题的方法 什么是缓存击穿、缓存穿透、缓存雪崩?缓存击穿缓存穿透缓存雪崩 Redis…...

【langchain学习】BM25Retriever和FaissRetriever组合 实现EnsembleRetriever混合检索器的实践

展示如何使用 LangChain 的 EnsembleRetriever 组合 BM25 和 FAISS 两种检索方法,从而在检索过程中结合关键词匹配和语义相似性搜索的优势。通过这种组合,我们能够在查询时获得更全面的结果。 1. 导入必要的库和模块 首先,我们需要导入所需…...

【C语言】预处理详解(上)

文章目录 前言1. 预定义符号2. #define 定义常量3. #define定义宏4. 带有副作用的宏参数5. 宏替换的规则 前言 在讲解编译和链接的知识点中,我提到过翻译环境中主要由编译和链接两大部分所组成。 其中,编译又包括了预处理、编译和汇编。当时&#xff0c…...

uni-app内置组件(基本内容,表单组件)()二

文章目录 一、 基础内容1.icon 图标2.text3.rich-text4.progress 二、表单组件1.button2.checkbox-group和checkbox3.editor 组件4.form5.input6.label7.picker8.picker-view 和 picker-view-column9.radio-group 和 radio10.slider11.switch12.textarea 一、 基础内容 1.icon…...

linux搭建redis超详细

1、下载redis包 链接: https://download.redis.io/releases/ 我以7.0.11为例 2、上传解压 mkdir /usr/local/redis tar -zxvf redis-7.0.11.tar.gz3、进入redis-7.0.11,依次执行 makemake install4、修改配置文件redis.conf vim redis.conf为了能够远程连接redis…...

Flink-DataWorks第二部分:数据集成(第58天)

系列文章目录 数据集成 2.1 概述 2.1.1 离线(批量)同步简介 2.1.2 实时同步简介 2.1.3 全增量同步任务简介 2.2 支持的数据源及同步方案 2.3 创建和管理数据源 文章目录 系列文章目录前言2. 数据集成2.1 概述2.1.1 离线(批量)同步…...

4个从阿里毕业的P7打工人,当起了包子铺的老板

吉祥知识星球http://mp.weixin.qq.com/s?__bizMzkwNjY1Mzc0Nw&mid2247483727&idx1&sndb05d8c1115a4539716eddd9fde4e5c9&chksmc0e47813f793f105017fb8551c9b996dc7782987e19efb166ab665f44ca6d900210e6c4c0281&scene21#wechat_redirect 《网安面试指南》h…...

javaweb_07:分层解耦

一、三层架构 (一)基础 在请求响应中,将代码都写在controller中,看起来内容很复杂,但是复杂的代码总体可以分为:数据访问、逻辑处理、接受请求和响应数据三个部分。在程序中我们尽量让一个类或者一个方法…...

调用 Python 开源库,获取油管英文视频的手动或自动英文srt字幕,以及自动中文简体翻译srt字幕

前提条件 非常抱歉,这个程序就是个雏形,非常不完善,输入需要手动编辑,凑活着可以用,请自己完善吧。 开源声明:此文代码引用了一个开源MIT License的Python库,其他代码是本人自写自用。你可以随…...

UDP协议实现通信与数据传输(创建客户端和服务器)

目录 一、UDP (传输层,用户数据报协议) 二、服务器Server的创建 三、客户端Client的创建 四、效果实现(描述) 一、UDP (传输层,用户数据报协议) UDP(User Datagram Pr…...

【红黑树】

红黑树 小杨 红黑树的概念 红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍&am…...

排序算法——简单选择排序

一、算法原理 简单选择排序是一种基本的排序算法,其原理是每次从未排序的元素中选择最小(或最大)的元素,然后与未排序部分的第一个元素交换位置,直到所有元素都被排序。 二、算法实现流程 简单选择排序法(Simple Se…...

OpenAI API推出结构化输出功能

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…...

Python 异步编程:Sqlalchemy 异步实现方式

SQLAlchemy 是 Python 中最流行的数据库工具之一,在新版本中引入了对异步操作的支持。这为使用异步框架(如 FastAPI)开发应用程序带来了极大的便利。在这篇文章中,简单介绍下 SQLAlchemy 是如何利用 Greenlet 实现异步操作的。 什…...

父类引用指向子类对象

在 Java 中,父类引用可以指向子类对象,这是多态的一种表现。这种特性允许你使用父类的引用来操作子类对象,从而实现更灵活和可扩展的代码设计。 基本概念 多态:父类引用可以指向子类对象。这使得你可以用统一的接口处理不同的对象…...

分享一个基于Spring Boot的面向社区的智能化健康管理系统的设计与实现(源码、调试、LW、开题、PPT)

💕💕作者:计算机源码社 💕💕个人简介:本人 八年开发经验,擅长Java、Python、PHP、.NET、Node.js、Android、微信小程序、爬虫、大数据、机器学习等,大家有这一块的问题可以一起交流&…...

【扒代码】reduction参数是什么

model DensityMapRegressor(in_channels256, reduction8)reduction 参数在 DensityMapRegressor 类中用于决定模型在上采样过程中的层级配置。具体来说,它决定了上采样过程中使用多少个 UpsamplingLayer,从而影响输出的分辨率。 reduction 参数的作用 …...

Python,Spire.Doc模块,处理word、docx文件,极致丝滑

Python处理word文件,一般都是推荐的Python-docx,但是只写出一个,一句话的文件,也没有什么样式,就是36K。 再打开word在另存一下,就可以到7-8k,我想一定是python-docx的问题,但一直没…...

shell脚本--常见案例

1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件: 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...

CentOS下的分布式内存计算Spark环境部署

一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...

ffmpeg(四):滤镜命令

FFmpeg 的滤镜命令是用于音视频处理中的强大工具,可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下: ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜: ffmpeg…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比

目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...

重启Eureka集群中的节点,对已经注册的服务有什么影响

先看答案,如果正确地操作,重启Eureka集群中的节点,对已经注册的服务影响非常小,甚至可以做到无感知。 但如果操作不当,可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定,这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中,积分电荷法最为常用,其原理是通过测量在电容器上积累的热释电电荷,从而确定热释电系数…...