当前位置: 首页 > news >正文

1630.等差子数组

1630. 等差子数组

难度中等

如果一个数列由至少两个元素组成,且每两个连续元素之间的差值都相同,那么这个序列就是 等差数列 。更正式地,数列 s 是等差数列,只需要满足:对于每个有效的 i , s[i+1] - s[i] == s[1] - s[0] 都成立。

例如,下面这些都是 等差数列 :

1, 3, 5, 7, 9
7, 7, 7, 7
3, -1, -5, -9

下面的数列 不是等差数列 :

1, 1, 2, 5, 7

给你一个由 n 个整数组成的数组 nums,和两个由 m 个整数组成的数组 l 和 r,后两个数组表示 m 组范围查询,其中第 i 个查询对应范围 [l[i], r[i]] 。所有数组的下标都是 从 0 开始 的。

返回 boolean 元素构成的答案列表 answer 。如果子数组 nums[l[i]], nums[l[i]+1], ... , nums[r[i]] 可以 重新排列 形成 等差数列 ,answer[i] 的值就是 true;否则answer[i] 的值就是 false 。

示例 1:

输入:nums = [4,6,5,9,3,7], l = [0,0,2], r = [2,3,5]
输出:[true,false,true]
解释:
第 0 个查询,对应子数组 [4,6,5] 。可以重新排列为等差数列 [6,5,4] 。
第 1 个查询,对应子数组 [4,6,5,9] 。无法重新排列形成等差数列。
第 2 个查询,对应子数组 [5,9,3,7] 。可以重新排列为等差数列 [3,5,7,9] 。

示例 2:

输入:nums = [-12,-9,-3,-12,-6,15,20,-25,-20,-15,-10], l = [0,1,6,4,8,7], r = [4,4,9,7,9,10]
输出:[false,true,false,false,true,true]

提示:

  • n == nums.length
  • m == l.length
  • m == r.length
  • 2 <= n <= 500
  • 1 <= m <= 500
  • 0 <= l[i] < r[i] < n
  • -10^5 <= nums[i] <= 10^5

思路:这道题很容易想到的思路就是我们对于每一个查询,对[L,R]区间内的数进行排序,然后判断每一对相邻的数的差值是不是都是一样的。这样总的复杂度为O(m*nlgn)。然而每次拷贝数据的代价是很高昂的,一个容易想到的优化思路是,如果存在两个查询之间存在包含关系或重叠部分,是可以为下一次的排序进行加速:

        包含关系:如两个查询[1,10],[3,7],我们先查询[3,7],并对[3,7]之间的数进行排序,判断差分。到下一次查询[1,10]时,我们可以通过二分查找的方式将[1,2],[8,10]这两个区间上的数以有序的方式插进[3,7]。

        重叠部分:如两个查询[3,7],[5,9],我们可以拆成[3,5],[5,9],可知这两部分都满足有序,此时可以用归并。

然而这样做编码复杂度会非常高,同时也无法加速无重叠 、无包含的查询。

我们从等差数列本身的性质入手,等差数列满足每一个相邻数对的查都是公差d。设有一个长度为n的等差数列,最大值为max_num,最小值为min_num,那么公差可以按照如下方式求解:

\tiny d=\frac{max\_num-min\_num}{n-1}

当我们有了公差之后,我们可以反推出这个数列内所有的数

\tiny a_i=a_0+(i-1)*d

因此本题的思路可以转换为,对每一个查询[L,R],算出公差d,并判断区间内每一个数是否满足下式且只出现一次(值得注意的是,如果公差为d即最大值等于最小值则一定是等差数列)。

\tiny (nums[j]-min\_num) % d==0

class Solution {
public:vector<bool> checkArithmeticSubarrays(vector<int>& nums, vector<int>& l, vector<int>& r) {int n = nums.size(), min_num[n + 5][n + 5], max_num[n + 5][n + 5], L, R, t, idx, len, d, tempIdx, diff, min_value,  max_value;const int maxn = 2e5 +7;bool existItemIdx[maxn];vector<bool> isArithmetic;for(len = 1; len <= n; ++ len){for(L = 0; L + len <= n; ++ L){if(len == 1){min_num[L][L] = max_num[L][L] = nums[L];}else{R = L + len - 1;t = L + (len >> 1) -1;min_num[L][R] = min(min_num[L][t], min_num[t + 1][R]);max_num[L][R] = max(max_num[L][t], max_num[t + 1][R]);}}}for(idx = 0; idx < l.size(); ++ idx){L = l[idx];R = r[idx];min_value = min_num[L][R];max_value = max_num[L][R];if(R - L <= 1 || max_value == min_value){//长度小于等于2或者最大最小值相等即公差为0isArithmetic.push_back(true);}else{d = (max_value - min_value) / (R - L);if(d * (R - L) == max_value - min_value){memset(existItemIdx, false, sizeof(existItemIdx));for(tempIdx = L; tempIdx <= R; ++ tempIdx){\diff = nums[tempIdx] - min_value;if(diff % d != 0 || existItemIdx[diff / d]){isArithmetic.push_back(false);break;}else{existItemIdx[diff / d] = true;}if(tempIdx == R){isArithmetic.push_back(true);}}}else{isArithmetic.push_back(false);}}}return isArithmetic;}
};

上述使用区间dp来求取区间最大、最小值有点大材小用了,也可以用对每一个查询遍历的方式。

class Solution {
public:vector<bool> checkArithmeticSubarrays(vector<int>& nums, vector<int>& l, vector<int>& r) {int n = nums.size(), L, R, t, idx, len, d, tempIdx, diff, min_value,  max_value;const int maxn = 2e5 +7;bool existItemIdx[maxn];vector<bool> isArithmetic;for(idx = 0; idx < l.size(); ++ idx){L = l[idx];R = r[idx];min_value = max_value = nums[L];for(tempIdx = L + 1; tempIdx <= R; ++ tempIdx){min_value = min(min_value, nums[tempIdx]);max_value = max(max_value, nums[tempIdx]);}if(R - L <= 1 || max_value == min_value){//长度小于等于2或者最大最小值相等即公差为0isArithmetic.push_back(true);}else{d = (max_value - min_value) / (R - L);if(d * (R - L) == max_value - min_value){memset(existItemIdx, false, sizeof(existItemIdx));for(tempIdx = L; tempIdx <= R; ++ tempIdx){\diff = nums[tempIdx] - min_value;if(diff % d != 0 || existItemIdx[diff / d]){isArithmetic.push_back(false);break;}else{existItemIdx[diff / d] = true;}if(tempIdx == R){isArithmetic.push_back(true);}}}else{isArithmetic.push_back(false);}}}return isArithmetic;}
};

相关文章:

1630.等差子数组

1630. 等差子数组 难度中等 如果一个数列由至少两个元素组成&#xff0c;且每两个连续元素之间的差值都相同&#xff0c;那么这个序列就是 等差数列 。更正式地&#xff0c;数列 s 是等差数列&#xff0c;只需要满足&#xff1a;对于每个有效的 i &#xff0c; s[i1] - s[i] …...

CSS 属性计算过程

CSS 属性计算过程 你是否了解 CSS 的属性计算过程呢&#xff1f; 有的同学可能会讲&#xff0c;CSS属性我倒是知道&#xff0c;例如&#xff1a; p{color : red; }上面的 CSS 代码中&#xff0c;p 是元素选择器&#xff0c;color 就是其中的一个 CSS 属性。 但是要说 CSS 属…...

ThinkPHP02:路由

ThinkPHP02&#xff1a;路由一、路由定义二、变量规则三、路由地址四、路由参数五、路由分组六、MISS七、资源路由八、注解路由九、URL生成一、路由定义 路由默认开启&#xff0c;在 config/app.php 中可以关闭路由。 路由配置在 config/route.php 中&#xff0c;路由定义在 r…...

制作简单进销存管理系统(C#)

实验三&#xff1a;制作简单进销存管理系统 任务要求&#xff1a; 在进销存管理系统中&#xff0c;商品的库存信息有很多种类&#xff0c;比如商品型号、商品名称、商品库存量等。在面向对象编程中&#xff0c;这些商品的信息可以存储到属性中&#xff0c;然后当需要使用这些…...

css总结9(过渡和2D变换)

目录 过渡 2D变换 3D变换 过渡 属性结构图 过渡补充 ### 过渡多个元素样式属性 transition:style1 duration , style2 duration,...; ### 过渡所有属性 transition: all duration; 简单示例 ### 移入时改变长度且加入过渡效果 div { width:100px; height:100px; …...

SpringBoot 结合RabbitMQ与Redis实现商品的并发下单【SpringBoot系列12】

SpringCloud 大型系列课程正在制作中&#xff0c;欢迎大家关注与提意见。 程序员每天的CV 与 板砖&#xff0c;也要知其所以然&#xff0c;本系列课程可以帮助初学者学习 SpringBooot 项目开发 与 SpringCloud 微服务系列项目开发 1 项目准备 SpringBoot 整合 RabbitMQ 消息队…...

【python进阶】序列切片还能这么用?切片的强大比你了解的多太多

&#x1f4da;引言 &#x1f64b;‍♂️作者简介&#xff1a;生鱼同学&#xff0c;大数据科学与技术专业硕士在读&#x1f468;‍&#x1f393;&#xff0c;曾获得华为杯数学建模国家二等奖&#x1f3c6;&#xff0c;MathorCup 数学建模竞赛国家二等奖&#x1f3c5;&#xff0c…...

[数据结构]直接插入排序、希尔排序

文章目录排序的概念和运用排序的概念排序运用常见的排序算法常见的排序算法直接插入排序希尔排序性能对比排序的概念和运用 排序的概念 排序&#xff1a;所谓排序&#xff0c;就是使一串记录&#xff0c;按照其中的某个或某些关键字的大小&#xff0c;递增或递减的排列起来的操…...

CNN、LeNet、AlexNet、VGG、GoogLeNet、RCNN、Fast RCNN、Faster RCNN、YOLO、YOLOv2、SSD等的关系

卷积神经网络的现状1943年美国数学家提出人工智能1949年心理学家建立神经元模型1957年弗兰克提出 感知器人工神经网络模型1980年建立多层感知器模型1984日本学者提出卷积神经网络原始模型神经感知机1998年提出LeNet-5卷积神经网络&#xff0c;并发展了其在音符和字符上的优势20…...

IO-day1-(fscanf、fprintf.........)

作业一、有一个usr.txt的文件&#xff0c;其中存储着用户的账户和密码&#xff0c;格式如下&#xff1a;zhangsan aaaalisi bbbbb空格前面是账户&#xff0c;空格后面是密码&#xff0c;一行一个账户、密码要求如下&#xff1a;从终端获取一个账户名和密码判断是否能够登录成功…...

C++类和对象(上篇)

目录 1.类的定义 2.类的访问限定符及封装 2.1类的访问限定符 2.2封装 3.类的作用域 4.类的实例化 5.类的大小 6.this 指针 1.类的定义 class className {// 类体&#xff1a;由成员函数和成员变量组成}; // 一定要注意后面的分号 class为定义类的关键字&#xff0c;Clas…...

解决Xshell无法连接Kali Linux 2020.1(2019.3)版本

使用Xshell远程终端工具连接虚拟机的Kali Linux却提示连接不上原因&#xff1a;Kali Linux默认没有打开SSH远程登录&#xff0c;SSH就是一种网络协议&#xff0c;用于加密的远程登录&#xff0c;所以在没有打开SSH协议之前是无法使用Xshell连接Kali Linux的。解决办法&#xff…...

项目文章 | 缓解高胆固醇血症 ,浒苔多糖如何相助?

文章标题&#xff1a;Polysaccharides from Enteromorpha prolifera alleviate hypercholesterolemia via modulating the gut microbiota and bile acid metabolism 发表期刊&#xff1a;Food & Function 影响因子&#xff1a;6.317 作者单位&#xff1a;福建医科大…...

Linux使用宝塔面板搭建网站,并内网穿透实现公网访问

文章目录前言1. 环境安装2. 安装cpolar内网穿透3. 内网穿透4.固定http地址5. 配置二级子域名6.创建一个测试页面前言 宝塔面板作为简单好用的服务器运维管理面板&#xff0c;它支持Linux/Windows系统&#xff0c;我们可用它来一键配置LAMP/LNMP环境、网站、数据库、FTP等&…...

基于深度学习方法与张量方法的图像去噪相关研究

目录 1 研究现状 1.1 基于张量分解的高光谱图像去噪 1.2 基于深度学习的图像去噪算法 1.3 基于深度学习的高光谱去噪 1.4 小结 2 基于深度学习的图像去噪算法 2.1 深度神经网络基本知识 2.2 基于深度学习的图像去噪网络 2.3 稀疏编码 2.3.1 传统稀疏编码 2.3.2 群稀…...

Java基础知识之HashMap的使用

一、HashMap介绍 HashMap是Map接口的一个实现类&#xff08;HashMap实现了Map的接口&#xff09;&#xff0c;它具有Map的特点。HashMap的底层是哈希表结构。 Map是用于保存具有映射关系的数据集合&#xff0c;它具有双列存储的特点&#xff0c;即一次必须添加两个元素&#xf…...

面试--每日一经

操作系统 死锁 死锁&#xff1a;是指两个或两个以上的进程在执行过程中&#xff0c;由于竞争资源或者由于彼此通信而造成的一种阻塞的现象&#xff0c;若无外力作用&#xff0c;它们都将无法推进下去。   死锁的四个必要条件 互斥条件&#xff1a;一个资源每次只能被一个进…...

JavaSE进阶之(十六)枚举

十六、枚举16.1 背景16.2 枚举类型16.3 EnumSet 和 EnumMap01、EnumSet02、EnumMap16.1 背景 在 Java 语言中还没有引入枚举类型之前&#xff0c;表示枚举类型的常用模式是声明一组 int 类型的常量&#xff0c;常常用的就是&#xff1a; public static final int SPRING 1; …...

全同态加密:TFHE

参考文献&#xff1a; Cheon J H, Stehl D. Fully homomophic encryption over the integers revisited[C]//Advances in Cryptology–EUROCRYPT 2015: 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, …...

【计算机二级】综合题目

计算机二级python真题 文章目录计算机二级python真题一、《大学慕课 两问 》二、综合应用题——价值链三、基本操作题 ——信息输出一、《大学慕课 两问 》 附件中的文件data.txt 是教育部爱课程网中国大学MOOC平台的某个 HTML页面源文件,里面包含了我国参与MOOC建设的一批大学…...

初识Kafka

介绍 Kafka Kafka 是一款基于发布与订阅的消息系统。 用生产者客户端 API 向 Kafka 生产消息&#xff0c;用消费者客户端 API 从 Kafka 读取这些消息。 Kafka 使用 Zookeeper 保存元数据信息。 Kafka 0.9 版本之前&#xff0c;除了 broker 之外&#xff0c; 消费者也会使用…...

【JavaEE】线程的状态

哈喽&#xff0c;大家好~我是保护小周ღ&#xff0c;本期为大家带来的是 Java 多线程的 线程的状态&#xff0c;New 新建状态&#xff0c;Runnable 运行状态&#xff0c;Blocked 阻塞状态&#xff0c;waiting 等待状态&#xff0c;Time_Waiting 超时等待状态&#xff0c;Termin…...

7个最受瞩目的 Python 库,提升你的开发效率

当今时代&#xff0c;数据分析和处理已经成为了各行各业中不可或缺的一环。Python作为一种非常流行的编程语言&#xff0c;为我们提供了许多强大的工具和库来处理不同类型的数据。 在这篇文章中&#xff0c;我将向您介绍七个非常有用的Python库&#xff0c;这些库各自有着独特…...

这些IT行业趋势,将改变2023

上一周&#xff0c;你被"AI"刷屏了吗&#xff1f; 打开任何一家科技媒体&#xff0c;人工智能都是不变的热门话题。周初大家还在用ChatGPT写论文、查资料、写代码&#xff0c;到周末的时候大家已经开始用GPT-4图像识别来做饭、Microsoft 365 Copilot 来写PPT了。 GP…...

蓝桥杯每日一真题——[蓝桥杯 2021 省 B] 杨辉三角形(二分+规律)

文章目录[蓝桥杯 2021 省 B] 杨辉三角形题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1提示思路&#xff1a;全部代码&#xff1a;[蓝桥杯 2021 省 B] 杨辉三角形 题目描述 下面的图形是著名的杨辉三角形: 如果我们按从上到下、从左到右的顺序把所有数排成一列&…...

<C++> 类和对象(下)

1.const成员函数将const修饰的“成员函数”称之为const成员函数&#xff0c;const修饰类成员函数&#xff0c;实际修饰该成员函数隐含的this指针&#xff0c;表明在该成员函数中不能对类的任何成员进行修改。class A { public:void Print() //这里隐藏了A* this指针{cout <…...

基于Springboot+Vue2前后端分离框架的智慧校园系统源码,智慧学校源码+微信小程序+人脸电子班牌

▶ 智慧校园开发环境&#xff1a; 1、使用springboot框架Javavue2 2、数据库MySQL5.7 3、移动端小程序使用小程序原生语音开发 4、电子班牌固件安卓7.1&#xff1b;使用Java Android原生 5、elmentui &#xff0c;Quartz&#xff0c;jpa&#xff0c;jwt 智慧校园结构导图▶ 这…...

JavaEE-线程安全问题

1.线程安全的概念 如果多线程环境下代码运行的结果是符合我们预期的&#xff0c;即在单线程环境应该的结果&#xff0c;则说这个程序是线 程安全的. 为啥会出现线程安全问题? 本质原因: 线程在系统中的调度是无序的/随机的 (抢占式执行). 2.开始说明 先看个线程不安全的例子…...

【Node.js】身份认证,Cookie和Session的认证机制,express中使用session认证和JWT认证

Node.jsWeb开发模式如何选择Web开发模式身份认证什么是身份认证为什么要身份认证不同开发模式的身份认证Session认证机制提高身份认证的安全性Session的工作原理Express中使用Session认证Session认证机制的局限性JWT认证机制JWT的工作原理JWT的组成部分Express中使用JWT在登录成…...

Redis删除策略和淘汰策略

一、删除策略 删除策略就是针对已过期数据的处理策略。 针对过期数据要进行删除的时候都有哪些删除策略呢&#xff1f; 1.定时删除2.惰性删除3.定期删除1、立即删除 当key设置有过期时间&#xff0c;且过期时间到达时&#xff0c;由定时器任务立即执行对键的删除操作。 优…...