【栈和队列OJ题】有效的括号用队列实现栈用栈实现队列设计循环队列
📝个人主页:@Sherry的成长之路
🏠学习社区:Sherry的成长之路(个人社区)
📖专栏链接:数据结构
🎯长路漫漫浩浩,万事皆有期待
文章目录
- OJ题
- 1.有效的括号
- 1.1 思路:
- 1.2 易错情况
- 2.用队列实现栈
- 2.1思路:
- 3.用栈实现队列
- 4.设计循环队列
- 4.1思路:
- 结构分析:
- 数组:
- 链表:
- 5.总结:
OJ题
1.有效的括号
链接:20. 有效的括号
描述:
给定一个只包括 (
,)
,{
,}
,[
,]
的字符串 s ,判断字符串是否有效。
有效字符串需满足:
左括号必须用相同类型的右括号闭合。
左括号必须以正确的顺序闭合。
每个右括号都有一个对应的相同类型的左括号。
示例1:
输入:s = “()”
输出:true示例2:
输入:s = “()[]{}”
输出:true示例3:
输入:s = “(]”
输出:false
提示:
1 <= s.length <= 104
s 仅由括号 ‘()[]{}’ 组成
1.1 思路:
这道题目的解题思路是十分符合 栈 的。
首先,我们先要实现一个栈,并创建变量和初始化。题目要求 左括号 需要以正确的顺序闭合,且左右括号成对,那么我们可以遍历字符串 s
。
遍历过程中让 左括号入栈,一旦遇到 右括号 便 取栈顶元素 和右括号匹配,并 出栈元素。
一旦匹配失败,便返回 false
。如果匹配成功,则让 s++
往后走。
当字符串遍历结束时,判断栈是否为空,如果栈空,则说明为有效的括号;如果栈非空,则说明有左括号没有匹配,那么返回false
。(这里需要返回栈是否为空的值)
1.2 易错情况
1.字符串遍历结束,栈中仍有元素:
输入:s = “() [] {”
输出:false
2.只有右括号,无左括号,栈空,取元素时越界访问:
输入:s = “) ] }”
输出:false
注
:只有右括号时为提前返回状况。提前返回需要注意栈的销毁,否则会内存泄漏 !内存泄漏不会报错,一定要仔细![如果在公司里面就可能造成事故,奖金没了(bushi) ]
typedef char STDataType;//栈中存储的元素类型typedef struct Stack
{STDataType* a;//栈int top;//栈顶int capacity;//容量,方便增容
}Stack;//初始化栈
void StackInit(Stack* pst)
{assert(pst);pst->a = (STDataType*)malloc(sizeof(STDataType)* 4);//初始化栈可存储4个元素pst->top = 0;//初始时栈中无元素,栈顶为0pst->capacity = 4;//容量为4
}//销毁栈
void StackDestroy(Stack* pst)
{assert(pst);free(pst->a);//释放栈pst->a = NULL;//及时置空pst->top = 0;//栈顶置0pst->capacity = 0;//容量置0
}//入栈
void StackPush(Stack* pst, STDataType x)
{assert(pst);if (pst->top == pst->capacity)//栈已满,需扩容{STDataType* tmp = (STDataType*)realloc(pst->a, sizeof(STDataType)*pst->capacity * 2);if (tmp == NULL){printf("realloc fail\n");exit(-1);}pst->a = tmp;pst->capacity *= 2;//栈容量扩大为原来的两倍}pst->a[pst->top] = x;//栈顶位置存放元素xpst->top++;//栈顶上移
}//检测栈是否为空
bool StackEmpty(Stack* pst)
{assert(pst);return pst->top == 0;
}//出栈
void StackPop(Stack* pst)
{assert(pst);assert(!StackEmpty(pst));//检测栈是否为空pst->top--;//栈顶下移
}//获取栈顶元素
STDataType StackTop(Stack* pst)
{assert(pst);assert(!StackEmpty(pst));//检测栈是否为空return pst->a[pst->top - 1];//返回栈顶元素
}//获取栈中有效元素个数
int StackSize(Stack* pst)
{assert(pst);return pst->top;//top的值便是栈中有效元素的个数
}
/*---以上代码是栈的基本功能实现,以下代码是题解主体部分---*/
bool isValid(char * s){Stack st;//创建一个栈StackInit(&st);//初始化栈char* cur = s;//cur用于遍历字符串while(*cur){if(*cur == '('||*cur == '{'||*cur == '[')//前括号统一入栈{StackPush(&st, *cur);cur++;}else{if(StackEmpty(&st))//若遇到后括号,且栈为空,则字符串无效{StackDestroy(&st);return false;}char top = StackTop(&st);//获取栈顶元素if((top == '('&&*cur != ')')||(top == '{'&&*cur != '}')||(top == '['&&*cur != ']'))//后括号与栈顶的前括号不匹配{StackDestroy(&st);return false;}else//匹配{StackPop(&st);cur++;}}}bool ret = StackEmpty(&st);//检测栈是否为空StackDestroy(&st);return ret;//栈为空返回true,栈不为空返回false
}
2.用队列实现栈
链接:225. 用队列实现栈
描述:
请你仅使用两个队列实现一个后入先出(LIFO)的栈,并支持普通栈的全部四种操作(push、top、pop 和 empty)。
实现 MyStack 类:
void push(int x) 将元素 x 压入栈顶。
int pop() 移除并返回栈顶元素。
int top() 返回栈顶元素。
boolean empty() 如果栈是空的,返回 true ;否则,返回 false 。
注意:
你只能使用队列的基本操作 —— 也就是 push to back、peek/pop from front、size 和 is empty 这些操作。
你所使用的语言也许不支持队列。 你可以使用 list (列表)或者 deque(双端队列)来模拟一个队列 , 只要是标准的队列操作即可。
示例:
输入:
[“MyStack”, “push”, “push”, “top”, “pop”, “empty”]
[[], [1], [2], [], [], []]
输出:
[null, null, null, 2, 2, false]
解释:
MyStack myStack = new MyStack();
myStack.push(1);
myStack.push(2);
myStack.top(); // 返回 2
myStack.pop(); // 返回 2
myStack.empty(); // 返回 False
提示:
1 <= x <= 9
最多调用100 次 push、pop、top 和 empty
每次调用 pop 和 top 都保证栈不为空
2.1思路:
队列 是 先进先出,栈 是 后进先出,要用队列实现栈,那么就要使用两个队列完成后进先出的操作。
栈的结构设计就是两个队列 q1、q2
。而实现栈,我们的重点就在于 后进先出。
可以这样思考:
1.1 我们需要时刻需要保持一个队列为空。
1.2 入数据时,往不为空的队列入数据,如果两个队列都为空,则入任意一个。
- 出数据时,将不为空的队列中的元素转移到空队列中直到队列中元素只剩一个,出栈原先非空队列的数据,原先非空队列变为空,出栈数据就是模拟栈的栈顶数据。
typedef int QDataType;//队列中存储的元素类型typedef struct QListNode
{struct QListNode* next;//指针域QDataType data;//数据域
}QListNode;typedef struct Queue
{QListNode* head;//队头QListNode* tail;//队尾
}Queue;
//初始化队列
void QueueInit(Queue* pq)
{assert(pq);//起始时队列为空pq->head = NULL;pq->tail = NULL;
}//销毁队列
void QueueDestroy(Queue* pq)
{assert(pq);QListNode* cur = pq->head;//接收队头//遍历链表,逐个释放结点while (cur){QListNode* next = cur->next;free(cur);cur = next;}pq->head = NULL;//队头置空pq->tail = NULL;//队尾置空
}//队尾入队列
void QueuePush(Queue* pq, QDataType x)
{assert(pq);QListNode* newnode = (QListNode*)malloc(sizeof(QListNode));//申请新结点if (newnode == NULL){printf("malloc fail\n");exit(-1);}newnode->data = x;//新结点赋值newnode->next = NULL;//新结点指针域置空if (pq->head == NULL)//队列中原本无结点{pq->head = pq->tail = newnode;//队头、队尾直接指向新结点}else//队列中原本有结点{pq->tail->next = newnode;//最后一个结点指向新结点pq->tail = newnode;//改变队尾指针指向}
}//检测队列是否为空
bool QueueEmpty(Queue* pq)
{assert(pq);return pq->head == NULL;
}//队头出队列
void QueuePop(Queue* pq)
{assert(pq);assert(!QueueEmpty(pq));//检测队列是否为空if (pq->head->next == NULL)//队列中只有一个结点{free(pq->head);pq->head = NULL;pq->tail = NULL;}else//队列中有多个结点{QListNode* next = pq->head->next;free(pq->head);pq->head = next;//改变队头指针指向}
}//获取队列头部元素
QDataType QueueFront(Queue* pq)
{assert(pq);assert(!QueueEmpty(pq));//检测队列是否为空return pq->head->data;//返回队头指针指向的数据
}//获取队列尾部元素
QDataType QueueBack(Queue* pq)
{assert(pq);assert(!QueueEmpty(pq));//检测队列是否为空return pq->tail->data;//返回队尾指针指向的数据
}//获取队列中有效元素个数
int QueueSize(Queue* pq)
{assert(pq);QListNode* cur = pq->head;//接收队头int count = 0;//记录结点个数while (cur)//遍历队列{count++;cur = cur->next;}return count;//返回队列中的结点数
}
/*---以上代码是队列的基本功能实现,以下代码是题解主体部分---*/
typedef struct {Queue q1;//第一个队列Queue q2;//第二个队列
} MyStack;/** Initialize your data structure here. */
MyStack* myStackCreate() {MyStack* pst = (MyStack*)malloc(sizeof(MyStack));//申请一个MyStack类型的栈QueueInit(&pst->q1);//初始化第一个队列QueueInit(&pst->q2);//初始化第二个队列return pst;
}/** Push element x onto stack. */
void myStackPush(MyStack* obj, int x) {//数据压入非空的那个队列if (!QueueEmpty(&obj->q1)){QueuePush(&obj->q1, x);}else{QueuePush(&obj->q2, x);}
}/** Removes the element on top of the stack and returns that element. */
int myStackPop(MyStack* obj) {Queue* pEmpty = &obj->q1;//记录空队列Queue* pNoEmpty = &obj->q2;//记录非空队列if (!QueueEmpty(&obj->q1))//&obj->q1 q1,q2是结构体,结构体传参取地址&{pEmpty = &obj->q2;pNoEmpty = &obj->q1;}while (QueueSize(pNoEmpty) > 1)//pEmpty,pNoEmpty本身就是结构体的指针了,指针传参不用取地址了,可以直接传{QueuePush(pEmpty, QueueFront(pNoEmpty));QueuePop(pNoEmpty);}//将非空队列中的数据放入空队列中,只留下一个数据int front = QueueFront(pNoEmpty);//获取目标数据QueuePop(pNoEmpty);//删除目标数据return front;
}/** Get the top element. */
int myStackTop(MyStack* obj) {//获取非空队列的队尾数据if (!QueueEmpty(&obj->q1)){return QueueBack(&obj->q1);}else{return QueueBack(&obj->q2);}
}/** Returns whether the stack is empty. */
bool myStackEmpty(MyStack* obj) {//两个队列均为空,则MyStack为空return QueueEmpty(&obj->q1) && QueueEmpty(&obj->q2);
}void myStackFree(MyStack* obj) {QueueDestroy(&obj->q1);//释放第一个队列QueueDestroy(&obj->q2);//释放第二个队列free(obj);//释放MyStack
}
3.用栈实现队列
链接:232. 用栈实现队列
描述:
请你仅使用两个栈实现先入先出队列。队列应当支持一般队列支持的所有操作(push、pop、peek、empty):
实现 MyQueue 类:
void push(int x) 将元素 x 推到队列的末尾
int pop() 从队列的开头移除并返回元素
int peek() 返回队列开头的元素
boolean empty() 如果队列为空,返回 true ;否则,返回 false
说明:
你 只能 使用标准的栈操作 —— 也就是只有 push to top, peek/pop from top, size, 和 is empty 操作是合法的。
你所使用的语言也许不支持栈。你可以使用 list 或者 deque(双端队列)来模拟一个栈,只要是标准的栈操作即可。
示例1:
输入:
[“MyQueue”, “push”, “push”, “peek”, “pop”, “empty”]
[[], [1], [2], [], [], []]
输出:
[null, null, null, 1, 1, false]
解释:
MyQueue myQueue = new MyQueue();
myQueue.push(1); // queue is: [1]
myQueue.push(2); // queue is: [1, 2] (leftmost is front of the queue)
myQueue.peek(); // return 1
myQueue.pop(); // return 1, queue is [2]
myQueue.empty(); // return false
提示:
1 <= x <= 9
最多调用 100 次 push、pop、peek 和 empty
假设所有操作都是有效的 (例如,一个空的队列不会调用 pop 或者 peek 操作)
思路:
队列 要求先进先出,而 栈 为后进先出。
我们将队列的结构设定为两个栈,接下来思考该如何实现操作?
我们把两个栈分别叫做 pushST
和 popST
。
1.当入队列时,就把数据入到 pushST 中。
2.当出队列时,如果 popST 中无数据,就把 pushST 中元素导入 popST 中,出栈;如果有数据则直接出栈。
这样就保证了入队列数据在 pushST 中,只要出队列,那么就把元素全部导入 popST 中出掉,栈在出数据时会改变顺序,恰好就对应了队列的规律。
typedef int STDataType;//栈中存储的元素类型typedef struct Stack
{STDataType* a;//栈int top;//栈顶int capacity;//容量,方便增容
}Stack;//初始化栈
void StackInit(Stack* pst)
{assert(pst);pst->a = (STDataType*)malloc(sizeof(STDataType)* 4);//初始化栈可存储4个元素pst->top = 0;//初始时栈中无元素,栈顶为0pst->capacity = 4;//容量为4
}//销毁栈
void StackDestroy(Stack* pst)
{assert(pst);free(pst->a);//释放栈pst->a = NULL;//及时置空pst->top = 0;//栈顶置0pst->capacity = 0;//容量置0
}//入栈
void StackPush(Stack* pst, STDataType x)
{assert(pst);if (pst->top == pst->capacity)//栈已满,需扩容{STDataType* tmp = (STDataType*)realloc(pst->a, sizeof(STDataType)*pst->capacity * 2);if (tmp == NULL){printf("realloc fail\n");exit(-1);}pst->a = tmp;pst->capacity *= 2;//栈容量扩大为原来的两倍}pst->a[pst->top] = x;//栈顶位置存放元素xpst->top++;//栈顶上移
}//检测栈是否为空
bool StackEmpty(Stack* pst)
{assert(pst);return pst->top == 0;
}//出栈
void StackPop(Stack* pst)
{assert(pst);assert(!StackEmpty(pst));//检测栈是否为空pst->top--;//栈顶下移
}//获取栈顶元素
STDataType StackTop(Stack* pst)
{assert(pst);assert(!StackEmpty(pst));//检测栈是否为空return pst->a[pst->top - 1];//返回栈顶元素
}//获取栈中有效元素个数
int StackSize(Stack* pst)
{assert(pst);return pst->top;//top的值便是栈中有效元素的个数
}
/*---以上代码是栈的基本功能实现,以下代码是题解主体部分---*/
typedef struct {Stack pushST;//插入数据时用的栈Stack popST;//删除数据时用的栈
} MyQueue;/** Initialize your data structure here. */MyQueue* myQueueCreate() {MyQueue* obj = (MyQueue*)malloc(sizeof(MyQueue));//申请一个队列类型StackInit(&obj->pushST);//初始化pushSTStackInit(&obj->popST);//初始化popSTreturn obj;
}/** Push element x to the back of queue. */
void myQueuePush(MyQueue* obj, int x) {StackPush(&obj->pushST, x);//插入数据,向pushST插入
}/** Get the front element. */
int myQueuePeek(MyQueue* obj) {if(StackEmpty(&obj->popST))//popST为空时,需先将pushST中数据导入popST{while(!StackEmpty(&obj->pushST))//将pushST数据全部导入popST{StackPush(&obj->popST, StackTop(&obj->pushST));StackPop(&obj->pushST);}}return StackTop(&obj->popST);//返回popST栈顶的元素
}/** Removes the element from in front of queue and returns that element. */
int myQueuePop(MyQueue* obj) {int top = myQueuePeek(obj);StackPop(&obj->popST);//删除数据,删除popST中栈顶的元素return top;
}/** Returns whether the queue is empty. */
bool myQueueEmpty(MyQueue* obj) {return StackEmpty(&obj->pushST)&&StackEmpty(&obj->popST);//两个栈均为空,则“队列”为空
}void myQueueFree(MyQueue* obj) {//先释放两个栈,再释放队列的结构体类型StackDestroy(&obj->pushST);StackDestroy(&obj->popST);free(obj);
}
4.设计循环队列
链接:622. 设计循环队列
描述:
设计你的循环队列实现。 循环队列是一种线性数据结构,其操作表现基于 FIFO(先进先出)原则并且队尾被连接在队首之后以形成一个循环。它也被称为“环形缓冲器”。
循环队列的一个好处是我们可以利用这个队列之前用过的空间。在一个普通队列里,一旦一个队列满了,我们就不能插入下一个元素,即使在队列前面仍有空间。但是使用循环队列,我们能使用这些空间去存储新的值。
你的实现应该支持如下操作:
MyCircularQueue(k): 构造器,设置队列长度为 k 。
Front: 从队首获取元素。如果队列为空,返回 -1 。
Rear: 获取队尾元素。如果队列为空,返回 -1 。
enQueue(value): 向循环队列插入一个元素。如果成功插入则返回真。
deQueue(): 从循环队列中删除一个元素。如果成功删除则返回真。
isEmpty(): 检查循环队列是否为空。
isFull(): 检查循环队列是否已满。
示例:
MyCircularQueue circularQueue = new MyCircularQueue(3); // 设置长度为 3
circularQueue.enQueue(1); // 返回 true
circularQueue.enQueue(2); // 返回 true
circularQueue.enQueue(3); // 返回 true
circularQueue.enQueue(4); // 返回 false,队列已满
circularQueue.Rear(); // 返回 3
circularQueue.isFull(); // 返回 true
circularQueue.deQueue(); // 返回 true
circularQueue.enQueue(4); // 返回 true
circularQueue.Rear(); // 返回 4
提示:
所有的值都在 0 至 1000 的范围内;
操作数将在 1 至 1000 的范围内;
请不要使用内置的队列库。
4.1思路:
在本题中,循环队列的大小是固定的,可重复利用之前的空间。接下来,就开始分析结构。
结构分析:
题目给定循环队列的大小为 k ,不论数组和链表,构建的大小为 k ,可行吗?
给定 front 和 rear 为0,front 标识队头,rear 标识队尾的下一个数据的位置,每当 入数据, rear++,向后走。
由于是循环队列,空间可以重复利用,当放置完最后一个数据后,rear需要回到头部。
那么问题来了,如何判空和判满 ?无论队列空或满,front 和 rear 都在一个位置。
1.解决方法一:
结构设计时,多加一个 size
,标识队列数据个数。
size=0为空,size=k就是满
2.解决方法二 :
创建队列时,额外创建一个空间。
缺陷
:单链表取尾不好取
数组:
对于数组,那么我们就开上 k + 1
个空间。
front
和 rear
分别标识队头和队尾。
每当入数据,rear 向后走一步,front 不动;每当出数据,front 向后走一步,rear 不动。当走过下标 k 处后,front 和 rear 的位置需要加以调整。比如,rear 下一步应该走到第一个空间:下标0位置。
队列空 时,front == rear。
队列满 时, rear 的下一个位置是 front 。平常只需要看 rear + 1 是否等于 front 即可。但是 放置的元素在 k 下标处时,此刻的 rear 需要特殊处理,rear 的位置会移动到 0 下标。经公式推导:(rear + 1) % (k + 1) == front 时,队列满,平常状况也不会受到公式影响。
入数据时,在 rear 位置入数据,然后 rear 向后移动,同样的,当入数据时到 k 下标的空间后,rear 需要特殊处理:rear %= k + 1。
出数据时,将 front 向后移动,当出数据到 k 下标的空间后,front 需要特殊处理:front %= k + 1。
取队头数据时,不为空取 front 处元素即可。
取队尾数据时,需要取rear 前一个位置,当队列非空时且 rear 不在 0下标时,直接取前一个;当队列非空且 rear 在 0 位置时,需要推导一下公式,前一个数据的下标为:(rear-1 + k+1) % (k + 1),两种情况都适用。
typedef struct
{int* a;//数组模拟环形队列int front;队头int rear;//队尾int k;//队列可存储的有效数据总数
} MyCircularQueue;MyCircularQueue* myCircularQueueCreate(int k)
{MyCircularQueue* obj = (MyCircularQueue*)malloc(sizeof(MyCircularQueue));//申请一个环形队列obj->a = (int*)malloc(sizeof(int) * (k + 1));//开K=1层//开辟队列空间obj->front = obj->rear = 0;//初始时,队头和队尾均为0obj->k = k;//设置队列可存储的有效数据个数return obj;
}bool myCircularQueueIsEmpty(MyCircularQueue* obj)
{return obj->front == obj->rear;//当front和rear指向同一位置时,队列为空
}bool myCircularQueueIsFull(MyCircularQueue* obj)
{return (obj->rear + 1) % (obj->k + 1) == obj->front;
}bool myCircularQueueEnQueue(MyCircularQueue* obj, int value)
{if (myCircularQueueIsFull(obj))//队列已满,不能再插入数据return false;//插入数据obj->a[obj->rear++] = value;//放数据obj->rear %= (obj->k + 1);return true;
}bool myCircularQueueDeQueue(MyCircularQueue* obj)
{if (myCircularQueueIsEmpty(obj))//当队列为空时,无法再删除数据return false;//删除数据obj->front++;obj->front %= (obj->k + 1);return true;
}int myCircularQueueFront(MyCircularQueue* obj)
{if (myCircularQueueIsEmpty(obj))//当队列为空时,无数据可返回return -1;else//返回队头指向的数据return obj->a[obj->front];
}int myCircularQueueRear(MyCircularQueue* obj)
{if (myCircularQueueIsEmpty(obj))//当队列为空时,无数据可返回return -1;else//返回rear指向位置的数据return obj->a[(obj->rear-1 + obj->k+1) % (obj->k + 1)];//可读性更强的方法//int x=obj->rear==0?obj->k:obj->rear-1;//rear=0 返回k的位置 反之返回rear-1//return obj->a[x];
}void myCircularQueueFree(MyCircularQueue* obj)
{free(obj->a);//先释放动态开辟的数组free(obj);//再释放动态开辟的结构体
}
链表:
其实对于循环队列而言,使用链表来构建是最清晰的。
注意
当构建链表时,构建的是 k + 1 个节点的 单向循环链表
front 和 rear 分别标识 队头 和 队尾。
队列空,front == rear 。
队列满,rear 的下一个节点就是 front 节点,rear->next == front。
入数据时,比数组设计简单很多,就直接让rear 迭代到下一个节点就可以。
出数据时,队列非空时,直接让front 迭代到下一个节点。
取队头元素时,如果非空,直接取 front 节点处的值。
取队尾元素时,如果非空,则从头开始迭代到rear 的前一个节点,取出元素。
需要注意
销毁的时候,由于链表不带头,所以销毁的时候可以从第二个节点开始迭代销毁,然后销毁第一个节点,最后销毁队列本身。这里比较细节,过会可以看一下代码。
typedef struct CQNode
{struct CQNode* next;int data;
}CQNode;typedef struct
{CQNode* front;CQNode* rear;
} MyCircularQueue;
bool myCircularQueueIsEmpty(MyCircularQueue* obj);
bool myCircularQueueIsFull(MyCircularQueue* obj);
// 创建节点
CQNode* BuyNode()
{CQNode* newnode = (CQNode*)malloc(sizeof(CQNode));newnode->next = NULL;return newnode;
}MyCircularQueue* myCircularQueueCreate(int k)
{// 构建长度 k + 1 的单向循环链表// 多开一个空间,防止边界问题CQNode* head = NULL, *tail = NULL;int len = k + 1;while (len--){CQNode* newnode = BuyNode();if (tail == NULL){head = tail = newnode;}else{tail->next = newnode;tail = newnode;}tail->next = head;}MyCircularQueue* cq = (MyCircularQueue*)malloc(sizeof(MyCircularQueue));cq->front = cq->rear = head;return cq;
}bool myCircularQueueEnQueue(MyCircularQueue* obj, int value)
{if (myCircularQueueIsFull(obj))return false;// 直接插入在rear位置,rear后移obj->rear->data = value;obj->rear = obj->rear->next;return true;
}bool myCircularQueueDeQueue(MyCircularQueue* obj)
{if (myCircularQueueIsEmpty(obj))return false;obj->front = obj->front->next;return true;
}int myCircularQueueFront(MyCircularQueue* obj)
{if (myCircularQueueIsEmpty(obj))return -1;return obj->front->data;
}int myCircularQueueRear(MyCircularQueue* obj)
{if (myCircularQueueIsEmpty(obj))return -1;// 取rear前一个元素CQNode* cur = obj->front;while (cur->next != obj->rear){cur = cur->next;}return cur->data;
}bool myCircularQueueIsEmpty(MyCircularQueue* obj)
{return obj->front == obj->rear;
}bool myCircularQueueIsFull(MyCircularQueue* obj)
{return obj->rear->next == obj->front;
}void myCircularQueueFree(MyCircularQueue* obj)
{// 销毁需要逐个销毁CQNode* cur = obj->front->next;// 从第二个节点开始,防止找不到头while (cur != obj->front){CQNode* next = cur->next;free(cur);cur = next;}// 销毁free(cur);free(obj);
}/*** Your MyCircularQueue struct will be instantiated and called as such:* MyCircularQueue* obj = myCircularQueueCreate(k);* bool param_1 = myCircularQueueEnQueue(obj, value);* bool param_2 = myCircularQueueDeQueue(obj);* int param_3 = myCircularQueueFront(obj);* int param_4 = myCircularQueueRear(obj);* bool param_5 = myCircularQueueIsEmpty(obj);* bool param_6 = myCircularQueueIsFull(obj);* myCircularQueueFree(obj);
*/
5.总结:
今天我们分析并完成栈和队列相关OJ题,通过分析明白了原理,愿这篇博客能帮助大家理解这些OJ题,因为栈和队列相关OJ题是还是有一些难度和细节需要注意。希望我的文章和讲解能对大家的学习提供一些帮助。之后会继续更新二叉树的相关知识点。
当然,本文仍有许多不足之处,欢迎各位小伙伴们随时私信交流、批评指正!我们下期见~
相关文章:

【栈和队列OJ题】有效的括号用队列实现栈用栈实现队列设计循环队列
📝个人主页:Sherry的成长之路 🏠学习社区:Sherry的成长之路(个人社区) 📖专栏链接:数据结构 🎯长路漫漫浩浩,万事皆有期待 文章目录OJ题1.有效的括号1.1…...

kuernetes 资源对象分析报错
文章目录1. pod 状态1.1 容器启动错误类型1.2 ImagePullBackOff 错误1.3 CrashLoopBackOff1.4 Pending2. Service 连接状态3. Ingress 连接状态1. pod 状态 创建一个 pod-status.yaml apiVersion: v1 kind: Pod metadata:name: runninglabels:app: nginx spec:containers:- na…...

动态内存的开辟
🐶博主主页:ᰔᩚ. 一怀明月ꦿ ❤️🔥专栏系列:线性代数,C初学者入门训练,题解C,C的使用文章,「初学」C 🔥座右铭:“不要等到什么都没有了,才下…...

【蓝桥杯-筑基篇】搜索
🍓系列专栏:蓝桥杯 🍉个人主页:个人主页 目录 递归树 1.递归构建二进制串 2.全排列的 DFS 解法 3.全排列的 BFS 解法 4.数的划分法 5.图书推荐 递归树 递归树是一种用于分析递归算法时间复杂度的工具。它可以将递归算法的执行过程可视化…...

week5-质数-最大公约数-快速幂-组合计数-博弈论
蓝桥 等差数列——欧几里得算法质数质数的判定——试除法分解质因数——试除法筛质数——埃氏筛法筛质数——线性筛法质数问题质数距离约数试除法求约数约数个数约数之和最大公约数-欧几里得算法(辗转相除法)扩展欧几里得算法裴蜀定理应用——线性同余方程消灭老鼠Hankson的趣…...

CloudCompare 二次开发(6)——插件中拖拽添加Qt窗口(区域生长算法为例)
目录 一、概述二、插件制作三、Cmake编译四、插件代码五、结果展示一、概述 手动拖拽的方式搭建Qt对话框界面的制作流程,以PCL中的点云区域生长算法为例进行制作。 二、插件制作 1、将....\plugins\example路径下的ExamplePlugin复制一份并修改名字为CCPointCloudProcess。 …...

2023值得推荐的高颜值Vue3.0 Web PC端UI框架,赶紧收藏学习!
Hello,我是前端胡说,本期给大家带来2023值得推荐的Vue3.0 UI组件库,希望大家喜欢! Vue3 正式发布已经有一段时间了,2022年2月也正式变成 Vue 项目的默认版本。在过去一年多的时间里,各大组件库、框架也紧跟…...

Springboot项目Aop、拦截器、过滤器横向对比
前言伟人曾经说过,没有调查就没有发言权(好像是伟人说的,不管谁说的,这句话是正确的),有些东西看着简单,张口就来,但很有可能是错的。我个人的经验是,aop、过滤器、拦截器的实现方式很简单&…...

为了之后找工作不被虐,每天刷3道《剑指offer》Day-1
本文已收录于专栏🌻《刷题笔记》文章目录前言💖 1、二维数组中的查找题目描述思路💖 2、替换空格题目描述思路💖 3、从尾到头打印链表题目描述思路一(反转函数)思路二(递归)思路二&a…...

Linux-磁盘管理介绍
Linux-磁盘管理介绍 计算硬盘介绍 硬盘是计算机主要存储媒介之一,由一个或者多个铝制或者玻璃制的碟片组成,碟片外覆盖有铁磁性材料,硬盘内部由磁道、柱面、扇区、磁头等部件组成; cylinder:柱面sector:扇区 磁道与…...

爬虫架构(一):爬虫中的去重处理
目录一、概要二、去重应用场景以及基本原理2.1 爬虫中什么业务需要使用去重2.2 去重实现的基本原理2.3 根据原始数据进行去重判断2.4 根据原始数据的特征值进行去重判断2.5 临时去重容器与持久化去重容器2.6 常用几种特殊的原始数据特征值计算三、基于信息摘要算法的去重3.1 信…...

算法刷题总结 (二) 回溯与深广搜算法
算法总结2 回溯与深广搜算法一、理解回溯算法1.1、回溯的概念1.2、回溯法的效率1.3、回溯法问题分类1.4、回溯法的做题步骤二、经典问题2.1、组合问题2.1.1、77. 组合 - 值不重复2.1.2、216.组合总和III - 值不重复且等于目标值2.1.3、17. 电话号码的字母组合 - 双层回溯2.1.4、…...

Linux 总结9个最危险的命令,一定要牢记在心!
rm -rf 命令 该命令可能导致不可恢复的系统崩坏。 rm -rf / #强制删除根目录下所有东西。 rm -rf * #强制删除当前目录的所有文件。 rm -rf . #强制删除当前文件夹及其子文件夹。 执行rm -rf 一定要想半天,搞明白自己在干什么. fork 炸弹 😦) { 😐:&am…...

spring cloud
spring cloud 分享 springboot:可以说是spring cloud的基础,是springMVC框架的简化,约定大于配置(在使用上、非功能上的简化) 可以说每个MPO Digital api就是springboot project(springboot项目) spring cloud…...

【9】核心易中期刊推荐——图像视觉与图形可视化
🚀🚀🚀NEW!!!核心易中期刊推荐栏目来啦 ~ 📚🍀 核心期刊在国内的应用范围非常广,核心期刊发表论文是国内很多作者晋升的硬性要求,并且在国内属于顶尖论文发表,具有很高的学术价值。在中文核心目录体系中,权威代表有CSSCI、CSCD和北大核心。其中,中文期刊的数…...

0108Bean销毁-Bean生命周期详解-spring
Bean使用阶段,调用getBean()得到bean之后,根据需要,自行使用。 1 销毁Bean的几种方式 调用org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory#destroyBean调用org.springframework.beans.factory.config.Conf…...

微信小程序可以进行dom操作吗?
小程序不能使用各种浏览器暴露出来的 DOM API,进行 DOM 选中和操作 原因:在小程序中,渲染层和逻辑层是分开的,分别运行在不同的线程中,逻辑层运行在 JSCore 中,并没有一个完整浏览器对象,因而缺…...

昇腾AI深耕沽上:港口辐射力之后,天津再添基础创新辐射力
作者 | 曾响铃 文 | 响铃说 AI计算正在以新基建联动产业集群的方式,加速落地。 不久前,天津市人工智能计算中心正式揭牌,该中心整体规划300P算力,2022年底首批100P算力上线投入运营,并实现上线即满载。 这是昇腾AI…...

基于YOLOv5的疲劳驾驶检测系统(Python+清新界面+数据集)
摘要:基于YOLOv5的疲劳驾驶检测系统使用深度学习技术检测常见驾驶图片、视频和实时视频中的疲劳行为,识别其闭眼、打哈欠等结果并记录和保存,以防止交通事故发生。本文详细介绍疲劳驾驶检测系统实现原理的同时,给出Python的实现代…...

【Linux】-- 进程优先级和环境变量
目录 进程的优先级 基本概念 如何查看优先级 PRI与NI NI值的设置范围 NI值如何修改 修改方式一 : 通过top指令修改优先级 修改方式二 : 通过renice指令修改优先级 进程的四个重要概念 环境变量 基本概念 常见的环境变量 查看环境变量 三种…...

iOS 紧急通知
一般通知 关于通知的各种配置和开发,可以参考推送通知教程:入门 – Kodeco,具有详细步骤。 紧急通知表现 紧急通知不受免打扰模式和静音模式约束。当紧急通知到达时,会有短暂提示音量和抖动(约2s)。未锁…...

即时零售:不可逆的进化
“人们经常问我,这个世界还是平的吗?我经常跟他们说,亲爱的,它真的是平的,比以前更平了。”2021年3月,《世界是平的》作者托马斯弗里德曼在演讲时说。如他所说,尽管逆全球化趋势加剧,…...

零售数据总结经验:找好关键分析指标和维度
各位数据的朋友,大家好,我是老周道数据,和你一起,用常人思维数据分析,通过数据讲故事。 每逢月末、季末、年终,运营部门的同事又要开始进行年终总结分析。那么,对零售连锁企业来说,…...

从零开始搭建游戏服务器 第一节 创建一个简单的服务器架构
目录引言技术选型正文创建基础架构IDEA创建项目添加Netty监听端口编写客户端进行测试总结引言 由于现在java web太卷了,所以各位同行可以考虑换一个赛道,做游戏还是很开心的。 本篇教程给新人用于学习游戏服务器的基本知识,给新人们一些学习…...

C++中那些你不知道的未定义行为
引子 开篇我们先看一个非常有趣的引子: // test.cpp int f(long *a, int *b) {*b 5;*a 1;return *b; }int main() {int x 10;int *p &x;auto q (long *)&x;auto ret f(q, p);std::cout << x << std::endl;std::cout << ret <&…...

java基础面试题(四)
Mysql索引的基本原理 索引是用来快速寻找特定的记录;把无序的数据变成有序的查询把创建索引的列数据进行排序对排序结果生成倒排表在倒排表的内容上拼接上地址链在查询时,先拿到倒排表内容,再取出地址链,最后拿到数据聚簇索引和非…...

@PropertySource使用场景
文章目录一、简单介绍二、注解说明1. 注解源码① PropertySource注解② PropertySources注解2. 注解使用场景3. 使用案例(1)新增test.properties文件(2)新增PropertySourceConfig类(3)新增PropertySourceTe…...

【C语言进阶:刨根究底字符串函数】strtok strerror函数
本节重点内容: 深入理解strtok函数的使用深入理解strerror函数的使用⚡strtok Returns a pointer to the first occurrence of str2 in str1, or a null pointer if str2 is not part ofstr1sep参数是个字符串,定义了用作分隔符的字符集合。第一个参数指…...

西安石油大学C语言期末重点知识点总结
大一学生一周十万字爆肝版C语言总结笔记 是我自己在学习完C语言的一次总结,尽管会有许多的瑕疵和不足,但也是自己对C语言的一次思考和探索,也让我开始有了写作博客的习惯和学习思考总结,争取等我将来变得更强的时候再去给它优化出…...

读《Multi-level Wavelet-CNN for Image Restoration》
Multi-level Wavelet-CNN for Image Restoration:MWCNN摘要一. 介绍二.相关工作三.方法摘要 存在的问题: 在低级视觉任务中,对于感受野尺寸与效率之间的平衡是一个关键的问题;普通卷积网络通常以牺牲计算成本去扩大感受野&#…...