当前位置: 首页 > news >正文

力扣 | 递归 | 区间上的动态规划 | 486. 预测赢家

文章目录

  • 一、递归
  • 二、区间动态规划

LeetCode:486. 预测赢家
在这里插入图片描述

一、递归

注意到本题数据范围为 1 < = n < = 20 1<=n<=20 1<=n<=20,因此可以使用递归枚举选择方式,时间复杂度为 2 20 = 1024 ∗ 1024 = 1048576 = 1.05 × 1 0 6 2^{20} = 1024*1024=1048576=1.05 × 10^6 220=10241024=1048576=1.05×106

对于每一个先手都有两种选择方式,我们对该选择方式进行枚举。

我们定义递归函数 p r e d i c t predict predict表示玩家1在当前选择的情况下是否可以胜利,注意到每个玩家的玩法都会使他的分数最大化,因此对于玩家2的选择,如果存在一个选择使得玩家1输,那么该情况下玩家1都不能胜利(只要玩家2选择让自己赢的情况,那么玩家1就不能赢了)。但是对于玩家1的选择,存在一个选择能赢就算可以赢。
在这里插入图片描述

class Solution {
public:bool predictTheWinner(vector<int>& nums) {return predict(nums, 0, (int) nums.size() - 1, 0, 0, 0);}
private:bool predict(vector<int> & nums, int left, int right, int player, int score_1, int score_2){if(left > right){if(score_1 >= score_2) return true;else return false;}if(player == 0){//玩家一,存在一个赢就算赢了if(predict(nums, left + 1, right, player ^ 1, score_1 + nums[left], score_2)) return true;if(predict(nums, left, right - 1, player ^ 1, score_1 + nums[right], score_2)) return true;}else{//玩家二,存在一个玩家二赢,则玩家一必输。if(predict(nums, left + 1, right, player ^ 1, score_1, score_2 + nums[left]) &&predict(nums, left, right - 1, player ^ 1, score_1, score_2 + nums[right])) return true;}return false;}
};

二、区间动态规划

注意到这里是从大的数组中选择,让数组依次减小,我们也可以从数组小的开始转移到大数组,因为当小数组确定时,大数组也能确定。

我们可以定义 d p 1 [ i ] [ j ] [ p l a y e r ] dp1[i][j][player] dp1[i][j][player]表示在选择数组 [ i , j ] [i,j] [i,j]时, p l a y e r player player先手时,玩家1的分数;类似的有 d p 2 [ i ] [ j ] [ p l a y e r ] dp2[i][j][player] dp2[i][j][player]

则有状态转移:

//玩家1先手dp1[i][j][0] = max(dp1[i + 1][j][1] + nums[i], dp1[i][j - 1][1] + nums[j]);if(dp1[i + 1][j][1] + nums[i] >= dp1[i][j - 1][1] + nums[j]){dp2[i][j][0] = dp2[i + 1][j][1];if(dp1[i + 1][j][1] + nums[i] == dp1[i][j - 1][1] + nums[j])dp2[i][j][0] = min(dp2[i + 1][j][1], dp2[i][j - 1][1]);}else{dp2[i][j][0] = dp2[i][j - 1][1];}
//玩家2先手dp2[i][j][1] = max(dp2[i + 1][j][0] + nums[i], dp2[i][j - 1][0] + nums[j]);if(dp2[i + 1][j][0] + nums[i] >= dp2[i][j - 1][0] + nums[j]){dp1[i][j][1] = dp1[i + 1][j][0];if(dp2[i + 1][j][0] + nums[i] == dp2[i][j - 1][0] + nums[j])dp1[i][j][1] = min(dp1[i + 1][j][0], dp1[i][j - 1][0]);}else{dp1[i][j][1] = dp1[i][j - 1][0];}

时间复杂度: O ( N 2 ) O(N^2) O(N2)
在这里插入图片描述

class Solution {
public:bool predictTheWinner(vector<int>& nums) {vector<vector<array<int, 2>>> dp1(nums.size(), vector<array<int, 2>>(nums.size(), array<int, 2>{}));vector<vector<array<int, 2>>> dp2(nums.size(), vector<array<int, 2>>(nums.size(), array<int, 2>{}));for(int i = 0; i < nums.size(); ++ i){dp1[i][i][0] = nums[i];dp2[i][i][1] = nums[i];}for(int k = 1; k < nums.size(); ++ k){for(int i = 0; k + i < nums.size(); ++ i){int j = i + k;//玩家1先手dp1[i][j][0] = max(dp1[i + 1][j][1] + nums[i], dp1[i][j - 1][1] + nums[j]);if(dp1[i + 1][j][1] + nums[i] >= dp1[i][j - 1][1] + nums[j]){dp2[i][j][0] = dp2[i + 1][j][1];if(dp1[i + 1][j][1] + nums[i] == dp1[i][j - 1][1] + nums[j])dp2[i][j][0] = min(dp2[i + 1][j][1], dp2[i][j - 1][1]);}else{dp2[i][j][0] = dp2[i][j - 1][1];}//玩家2先手dp2[i][j][1] = max(dp2[i + 1][j][0] + nums[i], dp2[i][j - 1][0] + nums[j]);if(dp2[i + 1][j][0] + nums[i] >= dp2[i][j - 1][0] + nums[j]){dp1[i][j][1] = dp1[i + 1][j][0];if(dp2[i + 1][j][0] + nums[i] == dp2[i][j - 1][0] + nums[j])dp1[i][j][1] = min(dp1[i + 1][j][0], dp1[i][j - 1][0]);}else{dp1[i][j][1] = dp1[i][j - 1][0];}}}return dp1[0][(int) nums.size() - 1][0] >= dp2[0][(int) nums.size() - 1][0];}
};

简化代码:(这个代码过了)

简化逻辑:玩家1先手,那么玩家1效益最大,玩家2应该效益要最低。
但这个逻辑感觉存在一定问题,因为玩家1先手,玩家1想要自己的效益最大,这个时候玩家2的效益是跟玩家1的选择有关的,因为棋局完全根据玩家1来决定。所以一开始我并没有直接使用min求解后手。

class Solution {
public:bool predictTheWinner(vector<int>& nums) {vector<vector<array<int, 2>>> dp1(nums.size(), vector<array<int, 2>>(nums.size(), array<int, 2>{}));vector<vector<array<int, 2>>> dp2(nums.size(), vector<array<int, 2>>(nums.size(), array<int, 2>{}));for(int i = 0; i < nums.size(); ++ i){dp1[i][i][0] = nums[i];dp2[i][i][1] = nums[i];}for(int k = 1; k < nums.size(); ++ k){for(int i = 0; k + i < nums.size(); ++ i){int j = i + k;//玩家1先手dp1[i][j][0] = max(dp1[i + 1][j][1] + nums[i], dp1[i][j - 1][1] + nums[j]);dp2[i][j][0] = min(dp2[i + 1][j][1], dp2[i][j - 1][1]);//玩家2先手dp2[i][j][1] = max(dp2[i + 1][j][0] + nums[i], dp2[i][j - 1][0] + nums[j]);dp1[i][j][1] = min(dp1[i + 1][j][0], dp1[i][j - 1][0]);}}return dp1[0][(int) nums.size() - 1][0] >= dp2[0][(int) nums.size() - 1][0];}
};

相关文章:

力扣 | 递归 | 区间上的动态规划 | 486. 预测赢家

文章目录 一、递归二、区间动态规划 LeetCode&#xff1a;486. 预测赢家 一、递归 注意到本题数据范围为 1 < n < 20 1<n<20 1<n<20&#xff0c;因此可以使用递归枚举选择方式&#xff0c;时间复杂度为 2 20 1024 ∗ 1024 1048576 1.05 1 0 6 2^{20…...

黑白格

题目描述 小杨有一个 n 行 m 列的网格图&#xff0c;其中每个格子要么是白色&#xff0c;要么是黑色。 小杨想知道至少包含 k 个黑色格子的最小子矩形包含了多少个格子。 输入格式 第一行包含三个正整数 n,m,k&#xff0c;含义如题面所示。 之后 n 行&#xff0c;每行⼀个…...

数据链路层(MAC地址)

文章目录 数据链路层&#xff08;MAC地址&#xff09;1、以太网2、以太网帧格式3、MAC地址4、对比理解 MAC 地址和 IP 地址5、最大传输单元&#xff08;MTU&#xff09;6、MTU 对 IP 协议的影响7、MTU 对 UDP 协议的影响8、MTU 对 TCP 协议的影响9、查看硬件地址和 MTU10、ARP …...

【ruby java】登陆功能/邮件发送模版240903

Rails 风格登录系统添加全面而详细的注释&#xff0c;解释每个部分的功能和用途。​​​​​​​​​ 详细注释&#xff0c;解释了每个文件和代码块的功能。以下是一些关键点的总结&#xff1a; 1. 控制器&#xff08;Controllers&#xff09;: - ApplicationController: …...

告别格式不兼容烦恼!ape转换mp3,分享3个简单方法

各位读者们&#xff0c;你们是否有过这种体验&#xff1a;满怀期待地在网上下载一首好听的歌曲&#xff0c;结果怎么点击手机都播放不了&#xff0c;定睛一看&#xff0c;弹窗显示“无法播放该音频文件”。这是为什么呢&#xff1f;原来那首歌的音频格式是ape&#xff0c;不被手…...

Java核心知识体系-并发与多线程:线程基础

1 先导 Java线程基础主要包含如下知识点&#xff0c;相信我们再面试的过程中&#xff0c;经常会遇到类似的提问。 1、线程有哪几种状态? 线程之间如何转变&#xff1f; 2、线程有哪几种实现方式? 各优缺点&#xff1f; 3、线程的基本操作&#xff08;线程管理机制&#xff…...

KRaft模式下的Kafka启动指南:摆脱Zookeeper依赖

一、背景介绍 多年来&#xff0c;人们一直在同时使用Apache ZooKeeper和Apache Kafka。但是自Apache Kafka 3.3发布以来&#xff0c;它就可以在没有ZooKeeper的情况下运行。同时它包含了新的命令kafka-metadata-quorum和kafka-metadata-shell?该如何安装新版kafka&#xff0c…...

【数据库】MySQL-基础篇-函数

专栏文章索引&#xff1a;数据库 有问题可私聊&#xff1a;QQ&#xff1a;3375119339 目录 一、简介 二、字符串函数 三、数值函数 四、日期函数 五、流程函数 一、简介 函数 是指一段可以直接被另一段程序调用的程序或代码。 也就意味着&#xff0c;这一段程序或代码在 M…...

dp练习【4】

最长数对链 646. 最长数对链 给你一个由 n 个数对组成的数对数组 pairs &#xff0c;其中 pairs[i] [lefti, righti] 且 lefti < righti 。 现在&#xff0c;我们定义一种 跟随 关系&#xff0c;当且仅当 b < c 时&#xff0c;数对 p2 [c, d] 才可以跟在 p1 [a, b…...

php 实现推荐算法

在PHP中实现推荐算法的应用场景通常包括电商、社交媒体、内容平台等。推荐算法可以帮助用户找到与其兴趣相关的内容&#xff0c;提高用户体验和平台黏性。以下是几种常见的推荐算法及其PHP实现方式&#xff1a; 1. 基于协同过滤的推荐算法 协同过滤&#xff08;Collaborative…...

相机光学(三十六)——光圈

0.参考链接 &#xff08;1&#xff09;Hall光圈和Piris光圈的区别 &#xff08;2&#xff09;自动光圈及P-IRIS原理 1.光圈分类 Hall光圈和Piris光圈是两种不同的光圈技术。它们之间的区别如下&#xff1a; Hall光圈&#xff1a;Hall光圈是一种传统的光电子元件&#xff0c;通…...

数据结构——树和二叉树

目录 一、树的概念 二、树结点之间的关系 三、二叉树 1、满二叉树 2、完全二叉树 四、二叉树的存储 1、顺序存储 2、链式存储 一、树的概念 如果数据和数据之间满足一对多的关系&#xff0c;将其逻辑结构称之为树 如下图&#xff1a;树的根与树的分支存在一对多的关系 将上…...

142. Go操作Kafka(confluent-kafka-go库)

文章目录 Apache kafka简介开始使用Apache Kafka构建生产者构建消费者 总结 之前已经有两篇文章介绍过 Go如何操作 kafka 28.windows安装kafka&#xff0c;Go操作kafka示例&#xff08;sarama库&#xff09; 51.Go操作kafka示例&#xff08;kafka-go库&#xff09; Apache ka…...

spring boot(学习笔记第十九课)

spring boot(学习笔记第十九课) Spring boot的batch框架&#xff0c;以及Swagger3(OpenAPI)整合 学习内容&#xff1a; Spring boot的batch框架Spring boot的Swagger3&#xff08;OpenAPI&#xff09;整合 1. Spring boot batch框架 Spring Batch是什么 Spring Batch 是一个…...

docker安装 redis 并且加密开启SSL/TLS通道

拉取镜像 docker pull registry.cn-hangzhou.aliyuncs.com/qiluo-images/redis:latest docker tag registry.cn-hangzhou.aliyuncs.com/qiluo-images/redis:latest redis:latest要在 Docker 容器中启动 Redis 并开启 SSL/TLS 加密&#xff0c;需按照以下步骤修改启动命令和配置…...

什么是ARM架构?什么是X86架构?两者的区别是什么?

一、什么是ARM架构 &#xff08;一&#xff09;起源于发展 ARM 架构由英国剑桥的 Acorn 计算机公司开发。因市场无合适产品&#xff0c;Acorn 自行设计出第一款微处理器&#xff0c;命名为 ARM。此后 ARM 架构不断发展&#xff0c;1990 年为与苹果合作成立 ARM 公司&#xff0…...

【vscode】vscode paste image插件设置

本文首发于 ❄️慕雪的寒舍 vscode编辑md文件的时候&#xff0c;如果想插入图片&#xff0c;自带的粘贴只会粘贴到当前目录下&#xff0c;也没有文件重命名&#xff0c;很不友好。 在扩展商店里面有mushan的Paste Image插件&#xff0c;相比自带的&#xff0c;更加友好一点。但…...

自定义string类

#include <iostream> #include <string> int main() { std::string str "Hello, World!"; // 使用 c_str() 将 std::string 转换为 C 风格字符串&#xff0c;并传递给 printf printf("The string is: %s\n", str.c_str()); // 尝试修改…...

Python | Leetcode Python题解之第387题字符串中的第一个唯一字符

题目&#xff1a; 题解&#xff1a; class Solution:def firstUniqChar(self, s: str) -> int:position dict()q collections.deque()n len(s)for i, ch in enumerate(s):if ch not in position:position[ch] iq.append((s[i], i))else:position[ch] -1while q and po…...

RocketMQ 消费时序列化报错问题分析及解决

问题背景 在2024年3月7日&#xff0c;系统消费 RocketMQ 消息时出现了序列化报错&#xff0c;错误信息显示为&#xff1a; java.io.InvalidClassException: com.xxx.xxx.bean.mg.GoodsChangeLogMessage; local class incompatible: stream classdesc serialVersionUID... 这是…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中&#xff0c;手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力&#xff0c;既支持点击、长按、拖拽等基础单一手势的精细控制&#xff0c;也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课&#xff0c;做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程&#xff0c;它的核心机制是 Goroutine 协程、Channel 通道&#xff0c;并基于CSP&#xff08;Communicating Sequential Processes&#xff0…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

ip子接口配置及删除

配置永久生效的子接口&#xff0c;2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...

关于uniapp展示PDF的解决方案

在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项&#xff1a; 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库&#xff1a; npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!

本文介绍了一种名为AnomalyAny的创新框架&#xff0c;该方法利用Stable Diffusion的强大生成能力&#xff0c;仅需单个正常样本和文本描述&#xff0c;即可生成逼真且多样化的异常样本&#xff0c;有效解决了视觉异常检测中异常样本稀缺的难题&#xff0c;为工业质检、医疗影像…...

ubuntu22.04 安装docker 和docker-compose

首先你要确保没有docker环境或者使用命令删掉docker sudo apt-get remove docker docker-engine docker.io containerd runc安装docker 更新软件环境 sudo apt update sudo apt upgrade下载docker依赖和GPG 密钥 # 依赖 apt-get install ca-certificates curl gnupg lsb-rel…...

图解JavaScript原型:原型链及其分析 | JavaScript图解

​​ 忽略该图的细节&#xff08;如内存地址值没有用二进制&#xff09; 以下是对该图进一步的理解和总结 1. JS 对象概念的辨析 对象是什么&#xff1a;保存在堆中一块区域&#xff0c;同时在栈中有一块区域保存其在堆中的地址&#xff08;也就是我们通常说的该变量指向谁&…...