当前位置: 首页 > news >正文

力扣 | 递归 | 区间上的动态规划 | 486. 预测赢家

文章目录

  • 一、递归
  • 二、区间动态规划

LeetCode:486. 预测赢家
在这里插入图片描述

一、递归

注意到本题数据范围为 1 < = n < = 20 1<=n<=20 1<=n<=20,因此可以使用递归枚举选择方式,时间复杂度为 2 20 = 1024 ∗ 1024 = 1048576 = 1.05 × 1 0 6 2^{20} = 1024*1024=1048576=1.05 × 10^6 220=10241024=1048576=1.05×106

对于每一个先手都有两种选择方式,我们对该选择方式进行枚举。

我们定义递归函数 p r e d i c t predict predict表示玩家1在当前选择的情况下是否可以胜利,注意到每个玩家的玩法都会使他的分数最大化,因此对于玩家2的选择,如果存在一个选择使得玩家1输,那么该情况下玩家1都不能胜利(只要玩家2选择让自己赢的情况,那么玩家1就不能赢了)。但是对于玩家1的选择,存在一个选择能赢就算可以赢。
在这里插入图片描述

class Solution {
public:bool predictTheWinner(vector<int>& nums) {return predict(nums, 0, (int) nums.size() - 1, 0, 0, 0);}
private:bool predict(vector<int> & nums, int left, int right, int player, int score_1, int score_2){if(left > right){if(score_1 >= score_2) return true;else return false;}if(player == 0){//玩家一,存在一个赢就算赢了if(predict(nums, left + 1, right, player ^ 1, score_1 + nums[left], score_2)) return true;if(predict(nums, left, right - 1, player ^ 1, score_1 + nums[right], score_2)) return true;}else{//玩家二,存在一个玩家二赢,则玩家一必输。if(predict(nums, left + 1, right, player ^ 1, score_1, score_2 + nums[left]) &&predict(nums, left, right - 1, player ^ 1, score_1, score_2 + nums[right])) return true;}return false;}
};

二、区间动态规划

注意到这里是从大的数组中选择,让数组依次减小,我们也可以从数组小的开始转移到大数组,因为当小数组确定时,大数组也能确定。

我们可以定义 d p 1 [ i ] [ j ] [ p l a y e r ] dp1[i][j][player] dp1[i][j][player]表示在选择数组 [ i , j ] [i,j] [i,j]时, p l a y e r player player先手时,玩家1的分数;类似的有 d p 2 [ i ] [ j ] [ p l a y e r ] dp2[i][j][player] dp2[i][j][player]

则有状态转移:

//玩家1先手dp1[i][j][0] = max(dp1[i + 1][j][1] + nums[i], dp1[i][j - 1][1] + nums[j]);if(dp1[i + 1][j][1] + nums[i] >= dp1[i][j - 1][1] + nums[j]){dp2[i][j][0] = dp2[i + 1][j][1];if(dp1[i + 1][j][1] + nums[i] == dp1[i][j - 1][1] + nums[j])dp2[i][j][0] = min(dp2[i + 1][j][1], dp2[i][j - 1][1]);}else{dp2[i][j][0] = dp2[i][j - 1][1];}
//玩家2先手dp2[i][j][1] = max(dp2[i + 1][j][0] + nums[i], dp2[i][j - 1][0] + nums[j]);if(dp2[i + 1][j][0] + nums[i] >= dp2[i][j - 1][0] + nums[j]){dp1[i][j][1] = dp1[i + 1][j][0];if(dp2[i + 1][j][0] + nums[i] == dp2[i][j - 1][0] + nums[j])dp1[i][j][1] = min(dp1[i + 1][j][0], dp1[i][j - 1][0]);}else{dp1[i][j][1] = dp1[i][j - 1][0];}

时间复杂度: O ( N 2 ) O(N^2) O(N2)
在这里插入图片描述

class Solution {
public:bool predictTheWinner(vector<int>& nums) {vector<vector<array<int, 2>>> dp1(nums.size(), vector<array<int, 2>>(nums.size(), array<int, 2>{}));vector<vector<array<int, 2>>> dp2(nums.size(), vector<array<int, 2>>(nums.size(), array<int, 2>{}));for(int i = 0; i < nums.size(); ++ i){dp1[i][i][0] = nums[i];dp2[i][i][1] = nums[i];}for(int k = 1; k < nums.size(); ++ k){for(int i = 0; k + i < nums.size(); ++ i){int j = i + k;//玩家1先手dp1[i][j][0] = max(dp1[i + 1][j][1] + nums[i], dp1[i][j - 1][1] + nums[j]);if(dp1[i + 1][j][1] + nums[i] >= dp1[i][j - 1][1] + nums[j]){dp2[i][j][0] = dp2[i + 1][j][1];if(dp1[i + 1][j][1] + nums[i] == dp1[i][j - 1][1] + nums[j])dp2[i][j][0] = min(dp2[i + 1][j][1], dp2[i][j - 1][1]);}else{dp2[i][j][0] = dp2[i][j - 1][1];}//玩家2先手dp2[i][j][1] = max(dp2[i + 1][j][0] + nums[i], dp2[i][j - 1][0] + nums[j]);if(dp2[i + 1][j][0] + nums[i] >= dp2[i][j - 1][0] + nums[j]){dp1[i][j][1] = dp1[i + 1][j][0];if(dp2[i + 1][j][0] + nums[i] == dp2[i][j - 1][0] + nums[j])dp1[i][j][1] = min(dp1[i + 1][j][0], dp1[i][j - 1][0]);}else{dp1[i][j][1] = dp1[i][j - 1][0];}}}return dp1[0][(int) nums.size() - 1][0] >= dp2[0][(int) nums.size() - 1][0];}
};

简化代码:(这个代码过了)

简化逻辑:玩家1先手,那么玩家1效益最大,玩家2应该效益要最低。
但这个逻辑感觉存在一定问题,因为玩家1先手,玩家1想要自己的效益最大,这个时候玩家2的效益是跟玩家1的选择有关的,因为棋局完全根据玩家1来决定。所以一开始我并没有直接使用min求解后手。

class Solution {
public:bool predictTheWinner(vector<int>& nums) {vector<vector<array<int, 2>>> dp1(nums.size(), vector<array<int, 2>>(nums.size(), array<int, 2>{}));vector<vector<array<int, 2>>> dp2(nums.size(), vector<array<int, 2>>(nums.size(), array<int, 2>{}));for(int i = 0; i < nums.size(); ++ i){dp1[i][i][0] = nums[i];dp2[i][i][1] = nums[i];}for(int k = 1; k < nums.size(); ++ k){for(int i = 0; k + i < nums.size(); ++ i){int j = i + k;//玩家1先手dp1[i][j][0] = max(dp1[i + 1][j][1] + nums[i], dp1[i][j - 1][1] + nums[j]);dp2[i][j][0] = min(dp2[i + 1][j][1], dp2[i][j - 1][1]);//玩家2先手dp2[i][j][1] = max(dp2[i + 1][j][0] + nums[i], dp2[i][j - 1][0] + nums[j]);dp1[i][j][1] = min(dp1[i + 1][j][0], dp1[i][j - 1][0]);}}return dp1[0][(int) nums.size() - 1][0] >= dp2[0][(int) nums.size() - 1][0];}
};

相关文章:

力扣 | 递归 | 区间上的动态规划 | 486. 预测赢家

文章目录 一、递归二、区间动态规划 LeetCode&#xff1a;486. 预测赢家 一、递归 注意到本题数据范围为 1 < n < 20 1<n<20 1<n<20&#xff0c;因此可以使用递归枚举选择方式&#xff0c;时间复杂度为 2 20 1024 ∗ 1024 1048576 1.05 1 0 6 2^{20…...

黑白格

题目描述 小杨有一个 n 行 m 列的网格图&#xff0c;其中每个格子要么是白色&#xff0c;要么是黑色。 小杨想知道至少包含 k 个黑色格子的最小子矩形包含了多少个格子。 输入格式 第一行包含三个正整数 n,m,k&#xff0c;含义如题面所示。 之后 n 行&#xff0c;每行⼀个…...

数据链路层(MAC地址)

文章目录 数据链路层&#xff08;MAC地址&#xff09;1、以太网2、以太网帧格式3、MAC地址4、对比理解 MAC 地址和 IP 地址5、最大传输单元&#xff08;MTU&#xff09;6、MTU 对 IP 协议的影响7、MTU 对 UDP 协议的影响8、MTU 对 TCP 协议的影响9、查看硬件地址和 MTU10、ARP …...

【ruby java】登陆功能/邮件发送模版240903

Rails 风格登录系统添加全面而详细的注释&#xff0c;解释每个部分的功能和用途。​​​​​​​​​ 详细注释&#xff0c;解释了每个文件和代码块的功能。以下是一些关键点的总结&#xff1a; 1. 控制器&#xff08;Controllers&#xff09;: - ApplicationController: …...

告别格式不兼容烦恼!ape转换mp3,分享3个简单方法

各位读者们&#xff0c;你们是否有过这种体验&#xff1a;满怀期待地在网上下载一首好听的歌曲&#xff0c;结果怎么点击手机都播放不了&#xff0c;定睛一看&#xff0c;弹窗显示“无法播放该音频文件”。这是为什么呢&#xff1f;原来那首歌的音频格式是ape&#xff0c;不被手…...

Java核心知识体系-并发与多线程:线程基础

1 先导 Java线程基础主要包含如下知识点&#xff0c;相信我们再面试的过程中&#xff0c;经常会遇到类似的提问。 1、线程有哪几种状态? 线程之间如何转变&#xff1f; 2、线程有哪几种实现方式? 各优缺点&#xff1f; 3、线程的基本操作&#xff08;线程管理机制&#xff…...

KRaft模式下的Kafka启动指南:摆脱Zookeeper依赖

一、背景介绍 多年来&#xff0c;人们一直在同时使用Apache ZooKeeper和Apache Kafka。但是自Apache Kafka 3.3发布以来&#xff0c;它就可以在没有ZooKeeper的情况下运行。同时它包含了新的命令kafka-metadata-quorum和kafka-metadata-shell?该如何安装新版kafka&#xff0c…...

【数据库】MySQL-基础篇-函数

专栏文章索引&#xff1a;数据库 有问题可私聊&#xff1a;QQ&#xff1a;3375119339 目录 一、简介 二、字符串函数 三、数值函数 四、日期函数 五、流程函数 一、简介 函数 是指一段可以直接被另一段程序调用的程序或代码。 也就意味着&#xff0c;这一段程序或代码在 M…...

dp练习【4】

最长数对链 646. 最长数对链 给你一个由 n 个数对组成的数对数组 pairs &#xff0c;其中 pairs[i] [lefti, righti] 且 lefti < righti 。 现在&#xff0c;我们定义一种 跟随 关系&#xff0c;当且仅当 b < c 时&#xff0c;数对 p2 [c, d] 才可以跟在 p1 [a, b…...

php 实现推荐算法

在PHP中实现推荐算法的应用场景通常包括电商、社交媒体、内容平台等。推荐算法可以帮助用户找到与其兴趣相关的内容&#xff0c;提高用户体验和平台黏性。以下是几种常见的推荐算法及其PHP实现方式&#xff1a; 1. 基于协同过滤的推荐算法 协同过滤&#xff08;Collaborative…...

相机光学(三十六)——光圈

0.参考链接 &#xff08;1&#xff09;Hall光圈和Piris光圈的区别 &#xff08;2&#xff09;自动光圈及P-IRIS原理 1.光圈分类 Hall光圈和Piris光圈是两种不同的光圈技术。它们之间的区别如下&#xff1a; Hall光圈&#xff1a;Hall光圈是一种传统的光电子元件&#xff0c;通…...

数据结构——树和二叉树

目录 一、树的概念 二、树结点之间的关系 三、二叉树 1、满二叉树 2、完全二叉树 四、二叉树的存储 1、顺序存储 2、链式存储 一、树的概念 如果数据和数据之间满足一对多的关系&#xff0c;将其逻辑结构称之为树 如下图&#xff1a;树的根与树的分支存在一对多的关系 将上…...

142. Go操作Kafka(confluent-kafka-go库)

文章目录 Apache kafka简介开始使用Apache Kafka构建生产者构建消费者 总结 之前已经有两篇文章介绍过 Go如何操作 kafka 28.windows安装kafka&#xff0c;Go操作kafka示例&#xff08;sarama库&#xff09; 51.Go操作kafka示例&#xff08;kafka-go库&#xff09; Apache ka…...

spring boot(学习笔记第十九课)

spring boot(学习笔记第十九课) Spring boot的batch框架&#xff0c;以及Swagger3(OpenAPI)整合 学习内容&#xff1a; Spring boot的batch框架Spring boot的Swagger3&#xff08;OpenAPI&#xff09;整合 1. Spring boot batch框架 Spring Batch是什么 Spring Batch 是一个…...

docker安装 redis 并且加密开启SSL/TLS通道

拉取镜像 docker pull registry.cn-hangzhou.aliyuncs.com/qiluo-images/redis:latest docker tag registry.cn-hangzhou.aliyuncs.com/qiluo-images/redis:latest redis:latest要在 Docker 容器中启动 Redis 并开启 SSL/TLS 加密&#xff0c;需按照以下步骤修改启动命令和配置…...

什么是ARM架构?什么是X86架构?两者的区别是什么?

一、什么是ARM架构 &#xff08;一&#xff09;起源于发展 ARM 架构由英国剑桥的 Acorn 计算机公司开发。因市场无合适产品&#xff0c;Acorn 自行设计出第一款微处理器&#xff0c;命名为 ARM。此后 ARM 架构不断发展&#xff0c;1990 年为与苹果合作成立 ARM 公司&#xff0…...

【vscode】vscode paste image插件设置

本文首发于 ❄️慕雪的寒舍 vscode编辑md文件的时候&#xff0c;如果想插入图片&#xff0c;自带的粘贴只会粘贴到当前目录下&#xff0c;也没有文件重命名&#xff0c;很不友好。 在扩展商店里面有mushan的Paste Image插件&#xff0c;相比自带的&#xff0c;更加友好一点。但…...

自定义string类

#include <iostream> #include <string> int main() { std::string str "Hello, World!"; // 使用 c_str() 将 std::string 转换为 C 风格字符串&#xff0c;并传递给 printf printf("The string is: %s\n", str.c_str()); // 尝试修改…...

Python | Leetcode Python题解之第387题字符串中的第一个唯一字符

题目&#xff1a; 题解&#xff1a; class Solution:def firstUniqChar(self, s: str) -> int:position dict()q collections.deque()n len(s)for i, ch in enumerate(s):if ch not in position:position[ch] iq.append((s[i], i))else:position[ch] -1while q and po…...

RocketMQ 消费时序列化报错问题分析及解决

问题背景 在2024年3月7日&#xff0c;系统消费 RocketMQ 消息时出现了序列化报错&#xff0c;错误信息显示为&#xff1a; java.io.InvalidClassException: com.xxx.xxx.bean.mg.GoodsChangeLogMessage; local class incompatible: stream classdesc serialVersionUID... 这是…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销&#xff0c;平衡网络负载&#xff0c;延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上&#xff0c;看到基于小智 AI DIY 玩具的演示&#xff0c;感觉有点意思&#xff0c;想着自己也来试试。 如果只是想烧录现成的固件&#xff0c;乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外&#xff0c;还提供了基于网页版的 ESP LA…...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题&#xff1a;docker pull 失败 网络不同&#xff0c;需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...