当前位置: 首页 > news >正文

k8s HPA

水平自动扩容和缩容HPA

HPA全称Horizontal Pod Autoscaler,即pod水平自动伸缩。HPA可以基于CPU利用率对replication controller、deployment和replicaset中的pod数量进行自动扩缩容(除了CPU利用率,也可以基于其他应用程序提供的度量指标custom metrics进行自动扩缩容)。

pod自动缩放不适用于无法缩放的对象,比如daemonsets。

HPA由kubernetes api资源和控制器实现。资源决定了控制器的行为。控制器辉周期性的获取目标资源指标,并于目标值比较后来调整pod副本数量。

创建测试Deployment
vi php-apache.yaml

apiVersion: apps/v1
kind: Deployment
metadata:name: php-apache
spec:selector:matchLabels:run: php-apachereplicas: 1template:metadata:labels:run: php-apachespec:containers:- name: php-apacheimage: aminglinux/hpa-exampleports:- containerPort: 80resources:limits:cpu: 500m  ##限制Pod CPU资源最多使用500mrequests:cpu: 200m  ##K8s要保证Pod使用的最小cpu资源为200m
---
apiVersion: v1
kind: Service
metadata:name: php-apachelabels:run: php-apache
spec:ports:- port: 80selector:run: php-apache

安装merics-server(通过它才能获取到具体的资源使用情况)
下载yaml文件

wget https://github.com/kubernetes-sigs/metrics-server/releases/latest/download/high-availability-1.21+.yaml

修改YAML文件
vi high-availability-1.21+.yaml
将image: k8s.gcr.io/metrics-server/metrics-server:v0.6.2 修改为 image: aminglinux/metrics-server:v0.6.2 
在image: 这行上面增加一行: - --kubelet-insecure-tls

创建HPA
vi  hpa-php-apache.yaml

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:name: php-apache
spec:scaleTargetRef:apiVersion: apps/v1kind: Deploymentname: php-apacheminReplicas: 1  ##最小Pod数为1maxReplicas: 10  ##最大Pod数为10metrics:- type: Resourceresource:name: cputarget:type: UtilizationaverageUtilization: 50  ##当Pod的CPU使用率超过50%时,需要自动扩容

模拟负载变动,查看扩缩容

再开一个终端,执行
kubectl run -i --tty load-generator --rm --image=busybox:1.28 --restart=Never -- /bin/sh -c "while sleep 0.01;do wget -q -O- http://php-apache;done"

回到原终端查看HAP和po

kubectl get deployment,po,hpa|grep -E 'NAME|php-apache'
#php-apache pod副本会逐渐增加,hpa的tagets列cpu使用率会越来越高,当超50%就会生成新pod副本

相关文章:

k8s HPA

水平自动扩容和缩容HPA HPA全称Horizontal Pod Autoscaler,即pod水平自动伸缩。HPA可以基于CPU利用率对replication controller、deployment和replicaset中的pod数量进行自动扩缩容(除了CPU利用率,也可以基于其他应用程序提供的度量指标cust…...

5G移动网络运维实验(训)室解决方案

随着第五代移动通信技术(5G)的快速普及和工业互联网的迅猛发展,全球制造业正面临着前所未有的深刻变革。5G技术凭借其超高的传输速率、极低的延迟以及大规模的连接能力,为工业自动化、智能制造等领域带来了革命性的技术支持。为了…...

单片机学习笔记

一、单片机帝国的诞生与发展 1.1 单片机的基本概念 单片机是一种集成电路芯片,采用超大规模的集成电路把具有数据处理功能的中央处理器存储器、输入输出端口、外围电路和相关外设集成在一块硅片上构成一个小而完整的微型计算机系统。 一般而言,单片机也…...

SpringBoot中@Value获取值和@ConfigurationProperties获取值用法及比较

SpringBoot中Value获取值和ConfigurationProperties获取值用法及比较 更新时间:2024年08月08日 09:41:48 作者:岳轩子 在Spring Boot中,Value注解是一个非常有用的特性,它允许我们将外部的配置注入到我们的Bean中,ConfigurationProperties用于将配置文件…...

执行任务赚积分

题目描述 现有N个任务需要处理,同一时间只能处理一个任务,处理每个任务所需要的时间固定为1。 每个任务都有最晚处理时间限制和积分值,在最晚处理时间点之前处理完成任务才可获得对应的积分奖励。 可用于处理任务的时间有限,请问…...

使用TLS解决Docker API暴露2375端口的问题

问题起因 由于本人开发环境是在 Windows,开发完成后需要使用 Dockerfile 打包镜像,这个过程需要有一个 Docker 服务完成,Windows 安装 Docker 会影响到很多环境,我又不想本地开虚拟机使用 Docker,于是我就索性使用服务…...

Pyspark中catalog的作用与常用方法

文章目录 Pyspark catalog用法catalog 介绍cache 缓存表uncache 清除缓存表cleanCache 清理所有缓存表createExternalTable 创建外部表currentDatabase 返回当前默认库tableExists 检查数据表是否存在,包含临时视图databaseExists 检查数据库是否存在dropGlobalTemp…...

聚焦2024数博会|与天空卫士一起探索AI与数据安全的融合应用

中国国际大数据产业博览会(简称数博会),是全球首个以大数据为主题的博览会,自2015年创办以来,经过多年的深厚沉淀,数博会已发展成为国际知名、引领前沿趋势的专业展示合作平台。 2024年8月28日至30日&#…...

实战docker第二天——cuda11.8,pytorch基础环境docker打包

在容器化环境中打包CUDA和PyTorch基础环境,可以将所有相关的软件依赖和配置封装在一个Docker镜像中。这种方法确保了在不同环境中运行应用程序时的一致性和可移植性: Docker:提供了容器化技术,通过将应用程序及其所有依赖打包在一…...

企业数字化转型的利器:RFID资产管理系统

在当今数字化时代,资产管理的效率和精确度对企业的成功至关重要。常达智能物联的RFID资产管理系统,凭借其高效、智能的管理方式,成为众多企业在数字化转型中的关键工具。 RFID资产管理系统的核心优势 一、精准资产定位与追踪 常达智能物联的…...

matplotlib中文乱码问题

在使用Matplotlib进行数据可视化的过程中,经常会遇到中文乱码的问题。显示乱码是由于编码问题导致的,而matplotlib 默认使用ASCII 编码,但是当使用pyplot时,是支持unicode编码的,只是默认字体是英文字体,导…...

提高开发效率的实用工具库VueUse

VueUse中文网:https://vueuse.nodejs.cn/ 使用方法 安装依赖包 npm i vueuse/core单页面使用(useThrottleFn举例) import { useThrottleFn } from "vueuse/core"; // 表单提交 const handleSubmit useThrottleFn(() > {// 具…...

【数据结构】你真的学会了二叉树了吗,来做一做二叉树的算法题及选择题

文章目录 1. 二叉树算法题1.1 单值二叉树1.2 相同的树1.3 另一棵树的子树1.4 二叉树的遍历1.5 二叉树的构建及遍历 2. 二叉树选择题3. 结语 1. 二叉树算法题 1.1 单值二叉树 https://leetcode.cn/problems/univalued-binary-tree/description/ 1.2 相同的树 https://leetco…...

压力测试知识总结

压力测试知识总结 引言 随着信息技术的飞速发展,软件系统在各个行业中的应用越来越广泛,其稳定性和可靠性成为用户关注的焦点。压力测试作为软件测试中的一种重要方法,对于确保软件在高负载环境下的稳定性和可靠性具有重要意义。本文将从压…...

@import导入样式以及scss变量应用与static目录

import函数:使用import语句可以导入外联样式表,import后跟需要导入的外联样式表的相对路径,用;表示语句结束。 static目录:就是无论你有没有在这个目录里用过,它都会进行编译打包 import函数应用:先在在项目里创建一个common 目录, 目录里面分别创建css,…...

分类中的语义一致性约束:助力模型优化

前言 这里介绍一篇笔者在去年ACL上发表的一篇文章,使用了空间语义约束来提高多模态分类的效果,类似的思路笔者也在视频描述等方向进行了尝试,也都取得了不错的效果。这种建模时对特征进行有意义的划分和约束对模型还是很有帮助的,…...

前端框架介绍

前端框架是Web开发中不可或缺的工具,它们通过提供结构化的开发方式、模块化组件、响应式设计以及高效的性能优化,极大地简化了Web应用程序的开发过程。以下是对当前主流及新兴前端框架的详细介绍,这些框架不仅涵盖了广泛的功能,还…...

java基础知识-JVM知识详解

文章目录 一、JVM内存结构二、常见垃圾回收算法1. 标记-清除算法(Mark-Sweep Algorithm)2. 标记-整理算法(Mark-Compact Algorithm)3. 复制算法(Copying Algorithm)4. 分代收集算法(Generational Collection)5. 增量收集算法(Incremental Collection)6. 并行收集算法…...

流动会场:以声学专利为核心的完美移动场地—轻空间

流动会场作为一种全新的活动场所选择,凭借其便捷的移动性与先进的声学设计,正逐渐成为各类演出、会议和文化活动的热门场地。其独特之处不仅在于搭建速度快、灵活性高,还在于其核心技术——声学专利的强大支持。 专利声学设计,打造…...

深度学习(一)-感知机+神经网络+激活函数

深度学习概述 深度学习的特点 优点 性能更好 不需要特征工程 在大数据样本下有更好的性能 能解决某些传统机器学习无法解决的问题 缺点 小数据样本下性能不如机器学习 模型复杂 可解释性弱 深度学习与传统机器学习相同点 深度学习、机器学习是同一问题不同的解决方法 …...

idea大量爆红问题解决

问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作: 1)、切换集群 2)、切换节点 3)、切换到 apparmor 的目录 4)、执行 apparmor 策略模块 5)、修改 pod 文件 6)、…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

DBAPI如何优雅的获取单条数据

API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...

三体问题详解

从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...

在WSL2的Ubuntu镜像中安装Docker

Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包: for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

HashMap中的put方法执行流程(流程图)

1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中,其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下: 初始判断与哈希计算: 首先,putVal 方法会检查当前的 table(也就…...

沙箱虚拟化技术虚拟机容器之间的关系详解

问题 沙箱、虚拟化、容器三者分开一一介绍的话我知道他们各自都是什么东西,但是如果把三者放在一起,它们之间到底什么关系?又有什么联系呢?我不是很明白!!! 就比如说: 沙箱&#…...