k8s HPA
水平自动扩容和缩容HPA
HPA全称Horizontal Pod Autoscaler,即pod水平自动伸缩。HPA可以基于CPU利用率对replication controller、deployment和replicaset中的pod数量进行自动扩缩容(除了CPU利用率,也可以基于其他应用程序提供的度量指标custom metrics进行自动扩缩容)。
pod自动缩放不适用于无法缩放的对象,比如daemonsets。
HPA由kubernetes api资源和控制器实现。资源决定了控制器的行为。控制器辉周期性的获取目标资源指标,并于目标值比较后来调整pod副本数量。
创建测试Deployment
vi php-apache.yaml
apiVersion: apps/v1
kind: Deployment
metadata:name: php-apache
spec:selector:matchLabels:run: php-apachereplicas: 1template:metadata:labels:run: php-apachespec:containers:- name: php-apacheimage: aminglinux/hpa-exampleports:- containerPort: 80resources:limits:cpu: 500m ##限制Pod CPU资源最多使用500mrequests:cpu: 200m ##K8s要保证Pod使用的最小cpu资源为200m
---
apiVersion: v1
kind: Service
metadata:name: php-apachelabels:run: php-apache
spec:ports:- port: 80selector:run: php-apache
安装merics-server(通过它才能获取到具体的资源使用情况)
下载yaml文件
wget https://github.com/kubernetes-sigs/metrics-server/releases/latest/download/high-availability-1.21+.yaml
修改YAML文件
vi high-availability-1.21+.yaml
将image: k8s.gcr.io/metrics-server/metrics-server:v0.6.2 修改为 image: aminglinux/metrics-server:v0.6.2
在image: 这行上面增加一行: - --kubelet-insecure-tls
创建HPA
vi hpa-php-apache.yaml
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:name: php-apache
spec:scaleTargetRef:apiVersion: apps/v1kind: Deploymentname: php-apacheminReplicas: 1 ##最小Pod数为1maxReplicas: 10 ##最大Pod数为10metrics:- type: Resourceresource:name: cputarget:type: UtilizationaverageUtilization: 50 ##当Pod的CPU使用率超过50%时,需要自动扩容
模拟负载变动,查看扩缩容
再开一个终端,执行
kubectl run -i --tty load-generator --rm --image=busybox:1.28 --restart=Never -- /bin/sh -c "while sleep 0.01;do wget -q -O- http://php-apache;done"
回到原终端查看HAP和po
kubectl get deployment,po,hpa|grep -E 'NAME|php-apache'
#php-apache pod副本会逐渐增加,hpa的tagets列cpu使用率会越来越高,当超50%就会生成新pod副本
相关文章:

k8s HPA
水平自动扩容和缩容HPA HPA全称Horizontal Pod Autoscaler,即pod水平自动伸缩。HPA可以基于CPU利用率对replication controller、deployment和replicaset中的pod数量进行自动扩缩容(除了CPU利用率,也可以基于其他应用程序提供的度量指标cust…...

5G移动网络运维实验(训)室解决方案
随着第五代移动通信技术(5G)的快速普及和工业互联网的迅猛发展,全球制造业正面临着前所未有的深刻变革。5G技术凭借其超高的传输速率、极低的延迟以及大规模的连接能力,为工业自动化、智能制造等领域带来了革命性的技术支持。为了…...

单片机学习笔记
一、单片机帝国的诞生与发展 1.1 单片机的基本概念 单片机是一种集成电路芯片,采用超大规模的集成电路把具有数据处理功能的中央处理器存储器、输入输出端口、外围电路和相关外设集成在一块硅片上构成一个小而完整的微型计算机系统。 一般而言,单片机也…...

SpringBoot中@Value获取值和@ConfigurationProperties获取值用法及比较
SpringBoot中Value获取值和ConfigurationProperties获取值用法及比较 更新时间:2024年08月08日 09:41:48 作者:岳轩子 在Spring Boot中,Value注解是一个非常有用的特性,它允许我们将外部的配置注入到我们的Bean中,ConfigurationProperties用于将配置文件…...

执行任务赚积分
题目描述 现有N个任务需要处理,同一时间只能处理一个任务,处理每个任务所需要的时间固定为1。 每个任务都有最晚处理时间限制和积分值,在最晚处理时间点之前处理完成任务才可获得对应的积分奖励。 可用于处理任务的时间有限,请问…...

使用TLS解决Docker API暴露2375端口的问题
问题起因 由于本人开发环境是在 Windows,开发完成后需要使用 Dockerfile 打包镜像,这个过程需要有一个 Docker 服务完成,Windows 安装 Docker 会影响到很多环境,我又不想本地开虚拟机使用 Docker,于是我就索性使用服务…...

Pyspark中catalog的作用与常用方法
文章目录 Pyspark catalog用法catalog 介绍cache 缓存表uncache 清除缓存表cleanCache 清理所有缓存表createExternalTable 创建外部表currentDatabase 返回当前默认库tableExists 检查数据表是否存在,包含临时视图databaseExists 检查数据库是否存在dropGlobalTemp…...

聚焦2024数博会|与天空卫士一起探索AI与数据安全的融合应用
中国国际大数据产业博览会(简称数博会),是全球首个以大数据为主题的博览会,自2015年创办以来,经过多年的深厚沉淀,数博会已发展成为国际知名、引领前沿趋势的专业展示合作平台。 2024年8月28日至30日&#…...

实战docker第二天——cuda11.8,pytorch基础环境docker打包
在容器化环境中打包CUDA和PyTorch基础环境,可以将所有相关的软件依赖和配置封装在一个Docker镜像中。这种方法确保了在不同环境中运行应用程序时的一致性和可移植性: Docker:提供了容器化技术,通过将应用程序及其所有依赖打包在一…...

企业数字化转型的利器:RFID资产管理系统
在当今数字化时代,资产管理的效率和精确度对企业的成功至关重要。常达智能物联的RFID资产管理系统,凭借其高效、智能的管理方式,成为众多企业在数字化转型中的关键工具。 RFID资产管理系统的核心优势 一、精准资产定位与追踪 常达智能物联的…...

matplotlib中文乱码问题
在使用Matplotlib进行数据可视化的过程中,经常会遇到中文乱码的问题。显示乱码是由于编码问题导致的,而matplotlib 默认使用ASCII 编码,但是当使用pyplot时,是支持unicode编码的,只是默认字体是英文字体,导…...

提高开发效率的实用工具库VueUse
VueUse中文网:https://vueuse.nodejs.cn/ 使用方法 安装依赖包 npm i vueuse/core单页面使用(useThrottleFn举例) import { useThrottleFn } from "vueuse/core"; // 表单提交 const handleSubmit useThrottleFn(() > {// 具…...

【数据结构】你真的学会了二叉树了吗,来做一做二叉树的算法题及选择题
文章目录 1. 二叉树算法题1.1 单值二叉树1.2 相同的树1.3 另一棵树的子树1.4 二叉树的遍历1.5 二叉树的构建及遍历 2. 二叉树选择题3. 结语 1. 二叉树算法题 1.1 单值二叉树 https://leetcode.cn/problems/univalued-binary-tree/description/ 1.2 相同的树 https://leetco…...

压力测试知识总结
压力测试知识总结 引言 随着信息技术的飞速发展,软件系统在各个行业中的应用越来越广泛,其稳定性和可靠性成为用户关注的焦点。压力测试作为软件测试中的一种重要方法,对于确保软件在高负载环境下的稳定性和可靠性具有重要意义。本文将从压…...

@import导入样式以及scss变量应用与static目录
import函数:使用import语句可以导入外联样式表,import后跟需要导入的外联样式表的相对路径,用;表示语句结束。 static目录:就是无论你有没有在这个目录里用过,它都会进行编译打包 import函数应用:先在在项目里创建一个common 目录, 目录里面分别创建css,…...

分类中的语义一致性约束:助力模型优化
前言 这里介绍一篇笔者在去年ACL上发表的一篇文章,使用了空间语义约束来提高多模态分类的效果,类似的思路笔者也在视频描述等方向进行了尝试,也都取得了不错的效果。这种建模时对特征进行有意义的划分和约束对模型还是很有帮助的,…...

前端框架介绍
前端框架是Web开发中不可或缺的工具,它们通过提供结构化的开发方式、模块化组件、响应式设计以及高效的性能优化,极大地简化了Web应用程序的开发过程。以下是对当前主流及新兴前端框架的详细介绍,这些框架不仅涵盖了广泛的功能,还…...

java基础知识-JVM知识详解
文章目录 一、JVM内存结构二、常见垃圾回收算法1. 标记-清除算法(Mark-Sweep Algorithm)2. 标记-整理算法(Mark-Compact Algorithm)3. 复制算法(Copying Algorithm)4. 分代收集算法(Generational Collection)5. 增量收集算法(Incremental Collection)6. 并行收集算法…...

流动会场:以声学专利为核心的完美移动场地—轻空间
流动会场作为一种全新的活动场所选择,凭借其便捷的移动性与先进的声学设计,正逐渐成为各类演出、会议和文化活动的热门场地。其独特之处不仅在于搭建速度快、灵活性高,还在于其核心技术——声学专利的强大支持。 专利声学设计,打造…...

深度学习(一)-感知机+神经网络+激活函数
深度学习概述 深度学习的特点 优点 性能更好 不需要特征工程 在大数据样本下有更好的性能 能解决某些传统机器学习无法解决的问题 缺点 小数据样本下性能不如机器学习 模型复杂 可解释性弱 深度学习与传统机器学习相同点 深度学习、机器学习是同一问题不同的解决方法 …...

目标检测-YOLOv4
YOLOv4介绍 YOLOv4 是 YOLO 系列的第四个版本,继承了 YOLOv3 的高效性,并通过大量优化和改进,在目标检测任务中实现了更高的精度和速度。相比 YOLOv3,YOLOv4 在框架设计、特征提取、训练策略等方面进行了全面升级。它在保持实时检…...

一台笔记本电脑的硬件都有哪些以及对应的功能
一台笔记本电脑的硬件通常包括多个关键组件,这些组件共同协作,确保电脑的正常运行。以下是笔记本电脑的主要硬件及其功能: 1. 中央处理器(CPU) 功能:CPU 是电脑的“大脑”,负责处理所有的计算…...

【程序分享1】第一性原理计算 + 数据处理程序
【1】第一性原理计算 数据处理程序 SMATool 程序:VASP QE 零温 有限温度 拉伸、剪切、双轴、维氏硬度的计算 ElasTool v3.0 程序:材料弹性和机械性能的高效计算和可视化工具包 VELAS 程序:用于弹性各向异性可视化和分析 Phasego 程序…...

【数据结构】栈与队列OJ题(用队列实现栈)(用栈实现队列)
目录 1.用队列实现栈oj题 对比 一、初始化 二、出栈 三、入栈 四、取队头元素: 2.用栈实现队列 一、定义 二、入队列 三、出队列 四、队头 五、判空 前言:如果想了解什么是栈和队列请参考上一篇文章进来一起把【数据结构】的【栈与队列】狠…...

element-ui打包之后图标不显示,woff、ttf加载404
1、bug 起因 昨天在 vue 项目中编写 element-ui 的树形结构的表格,发现项目中无法生效,定位问题之后发现项目使用的 element-ui 的版本是 2.4.11 。看了官方最新版本是 2.15.14,然后得知 2.4.11 版本是不支持表格树形结构的。于是决定升级 el…...

探究零工市场小程序如何改变传统兼职模式
近年来,零工市场小程序正逐渐改变传统的兼职模式,为求职者和雇主提供了一个更为高效、便捷的平台。本文将深入探讨零工市场小程序如何影响传统兼职模式,以及它带来的优势和挑战。 一、背景与挑战 传统的兼职市场往往存在信息不对称的问题&am…...

MySQL数据库安装(详细)—>Mariadb的安装(day21)
该网盘链接有效期为7天,有需要评论区扣我: 通过网盘分享的文件:mariadb-10.3.7-winx64.msi 链接: https://pan.baidu.com/s/1-r_w3NuP8amhIEedmTkWsQ?pwd2ua7 提取码: 2ua7 1 双击打开安装软件 本次安装的是mariaDB,双击打开mar…...

微信小程序实践案例
参考视频: https://www.bilibili.com/video/BV1834y1676P/?p36&spm_id_frompageDriver&vd_sourceb604c19516c17da30b6b1abb6c4e7ec0 前期准备 1、新建三个页面 "pages": ["pages/home/home","pages/message/message",&quo…...

DataLoader使用
文章目录 一、认识dataloader二、DataLoader整合数据集三、使用DataLoader展示图片方法四、去除结尾不满足batch_size设值图片的展示 一、认识dataloader DataLoader 用于封装数据集,并提供批量加载数据的迭代器。它支持自动打乱数据、多线程数据加载等功能。datas…...

CSS学习11--版心和布局流程以及几种分布的例子
版心和布局流程 一、版心二、布局流程三、一列固定宽度且居中四、两列左窄右宽五、通栏平均分布型 一、版心 版心:是指网页主题内容所在的区域。一般在浏览器窗口水平居中位置,常见的宽度值为960px、980px、1000px、1200px等。 二、布局流程 为了提高…...