基于yolov8的血细胞检测计数系统python源码+onnx模型+评估指标曲线+精美GUI界面
【算法介绍】
基于YOLOv8的血细胞检测与计数系统是一种利用深度学习技术,特别是YOLOv8目标检测算法,实现高效、准确血细胞识别的系统。该系统能够自动识别并计数图像或视频中的血细胞,包括红细胞、白细胞和血小板等,为医疗诊断提供重要支持。
YOLOv8以其高速和高精度的目标检测能力著称,适用于实时目标检测应用。该系统通过收集并预处理包含各种血细胞类型的图像或视频数据,利用YOLOv8算法进行模型训练,从而学习血细胞的特征和分类信息。在实时检测阶段,系统能够快速接收并处理图像或视频输入,准确识别并计数血细胞,生成详细的统计报告。
该系统不仅提高了血细胞检测的自动化程度和准确性,还减少了人为误差,大大减轻了医护人员的工作负担。同时,其高效性和准确性为医疗诊断、疾病监测和治疗提供了可靠的数据支持,具有重要的临床应用价值。此外,该系统还可进一步应用于其他生物医学领域中的目标检测与计数任务,为生物医学研究提供有力支持。
【效果介绍】

【测试环境】
windows10
anaconda3+python3.8
torch==1.9.0+cu111
ultralytics==8.2.70
【模型可以检测出类别】
Platelets
RBC
WBC
sickle cell
【训练信息】
| 参数 | 值 |
| 训练集图片数 | 2676 |
| 验证集图片数 | 60 |
| 训练map | 87.4% |
| 训练精度(Precision) | 82.7% |
| 训练召回率(Recall) | 79.5% |
【训练数据集(注意由于数据集优化可能和训练数据集有差异)】
https://download.csdn.net/download/FL1623863129/89725754?spm=1001.2014.3001.5501
【部分实现源码】
class Ui_MainWindow(QtWidgets.QMainWindow):signal = QtCore.pyqtSignal(str, str)def setupUi(self):self.setObjectName("MainWindow")self.resize(1280, 728)self.centralwidget = QtWidgets.QWidget(self)self.centralwidget.setObjectName("centralwidget")self.weights_dir = './weights'self.picture = QtWidgets.QLabel(self.centralwidget)self.picture.setGeometry(QtCore.QRect(260, 10, 1010, 630))self.picture.setStyleSheet("background:black")self.picture.setObjectName("picture")self.picture.setScaledContents(True)self.label_2 = QtWidgets.QLabel(self.centralwidget)self.label_2.setGeometry(QtCore.QRect(10, 10, 81, 21))self.label_2.setObjectName("label_2")self.cb_weights = QtWidgets.QComboBox(self.centralwidget)self.cb_weights.setGeometry(QtCore.QRect(10, 40, 241, 21))self.cb_weights.setObjectName("cb_weights")self.cb_weights.currentIndexChanged.connect(self.cb_weights_changed)self.label_3 = QtWidgets.QLabel(self.centralwidget)self.label_3.setGeometry(QtCore.QRect(10, 70, 72, 21))self.label_3.setObjectName("label_3")self.hs_conf = QtWidgets.QSlider(self.centralwidget)self.hs_conf.setGeometry(QtCore.QRect(10, 100, 181, 22))self.hs_conf.setProperty("value", 25)self.hs_conf.setOrientation(QtCore.Qt.Horizontal)self.hs_conf.setObjectName("hs_conf")self.hs_conf.valueChanged.connect(self.conf_change)self.dsb_conf = QtWidgets.QDoubleSpinBox(self.centralwidget)self.dsb_conf.setGeometry(QtCore.QRect(200, 100, 51, 22))self.dsb_conf.setMaximum(1.0)self.dsb_conf.setSingleStep(0.01)self.dsb_conf.setProperty("value", 0.25)self.dsb_conf.setObjectName("dsb_conf")self.dsb_conf.valueChanged.connect(self.dsb_conf_change)self.dsb_iou = QtWidgets.QDoubleSpinBox(self.centralwidget)self.dsb_iou.setGeometry(QtCore.QRect(200, 160, 51, 22))self.dsb_iou.setMaximum(1.0)self.dsb_iou.setSingleStep(0.01)self.dsb_iou.setProperty("value", 0.45)self.dsb_iou.setObjectName("dsb_iou")self.dsb_iou.valueChanged.connect(self.dsb_iou_change)self.hs_iou = QtWidgets.QSlider(self.centralwidget)self.hs_iou.setGeometry(QtCore.QRect(10, 160, 181, 22))self.hs_iou.setProperty("value", 45)self.hs_iou.setOrientation(QtCore.Qt.Horizontal)self.hs_iou.setObjectName("hs_iou")self.hs_iou.valueChanged.connect(self.iou_change)self.label_4 = QtWidgets.QLabel(self.centralwidget)self.label_4.setGeometry(QtCore.QRect(10, 130, 72, 21))self.label_4.setObjectName("label_4")self.label_5 = QtWidgets.QLabel(self.centralwidget)self.label_5.setGeometry(QtCore.QRect(10, 210, 72, 21))self.label_5.setObjectName("label_5")self.le_res = QtWidgets.QTextEdit(self.centralwidget)self.le_res.setGeometry(QtCore.QRect(10, 240, 241, 400))self.le_res.setObjectName("le_res")self.setCentralWidget(self.centralwidget)self.menubar = QtWidgets.QMenuBar(self)self.menubar.setGeometry(QtCore.QRect(0, 0, 1110, 30))self.menubar.setObjectName("menubar")self.setMenuBar(self.menubar)self.statusbar = QtWidgets.QStatusBar(self)self.statusbar.setObjectName("statusbar")self.setStatusBar(self.statusbar)self.toolBar = QtWidgets.QToolBar(self)self.toolBar.setToolButtonStyle(QtCore.Qt.ToolButtonTextBesideIcon)self.toolBar.setObjectName("toolBar")self.addToolBar(QtCore.Qt.TopToolBarArea, self.toolBar)self.actionopenpic = QtWidgets.QAction(self)icon = QtGui.QIcon()icon.addPixmap(QtGui.QPixmap(":/images/1.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)self.actionopenpic.setIcon(icon)self.actionopenpic.setObjectName("actionopenpic")self.actionopenpic.triggered.connect(self.open_image)self.action = QtWidgets.QAction(self)icon1 = QtGui.QIcon()icon1.addPixmap(QtGui.QPixmap(":/images/2.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)self.action.setIcon(icon1)self.action.setObjectName("action")self.action.triggered.connect(self.open_video)self.action_2 = QtWidgets.QAction(self)icon2 = QtGui.QIcon()icon2.addPixmap(QtGui.QPixmap(":/images/3.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)self.action_2.setIcon(icon2)self.action_2.setObjectName("action_2")self.action_2.triggered.connect(self.open_camera)self.actionexit = QtWidgets.QAction(self)icon3 = QtGui.QIcon()icon3.addPixmap(QtGui.QPixmap(":/images/4.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)self.actionexit.setIcon(icon3)self.actionexit.setObjectName("actionexit")self.actionexit.triggered.connect(self.exit)self.toolBar.addAction(self.actionopenpic)self.toolBar.addAction(self.action)self.toolBar.addAction(self.action_2)self.toolBar.addAction(self.actionexit)self.retranslateUi()QtCore.QMetaObject.connectSlotsByName(self)self.init_all()
【使用步骤】
使用步骤:
(1)首先根据官方框架https://github.com/ultralytics/ultralytics安装教程安装好yolov8环境,并安装好pyqt5
(2)切换到自己安装的yolov8环境后,并切换到源码目录,执行python main.py即可运行启动界面,进行相应的操作即可
【提供文件】
python源码
yolov8s.onnx模型(不提供pytorch模型)
训练的map,P,R曲线图(在weights\results.png)
测试图片(在test_img文件夹下面)
【源码下载地址】
https://download.csdn.net/download/FL1623863129/89725921
相关文章:
基于yolov8的血细胞检测计数系统python源码+onnx模型+评估指标曲线+精美GUI界面
【算法介绍】 基于YOLOv8的血细胞检测与计数系统是一种利用深度学习技术,特别是YOLOv8目标检测算法,实现高效、准确血细胞识别的系统。该系统能够自动识别并计数图像或视频中的血细胞,包括红细胞、白细胞和血小板等,为医疗诊断提…...
【深度学习详解】Task3 实践方法论-分类任务实践 Datawhale X 李宏毅苹果书 AI夏令营
前言 综合之前的学习内容, 本篇将探究机器学习实践方法论 出现的问题及其原因 🍎 🍎 🍎 系列文章导航 【深度学习详解】Task1 机器学习基础-线性模型 Datawhale X 李宏毅苹果书 AI夏令营 【深度学习详解】Task2 分段线性模型-引入…...
乐凡北斗 | 手持北斗智能终端的作用与应用场景
在科技日新月异的今天,北斗智能终端作为一项融合了北斗导航系统与现代智能技术的创新成果,正悄然改变着我们的生活方式和工作模式。 北斗智能终端,是以北斗卫星导航系统为核心,集成了高精度定位、导航、授时等功能的智能设备。它…...
Linux:线程互斥
线程互斥 先看到一个抢票案例: class customer { public:int _ticket_num 0;pthread_t _tid;string _name; };int g_ticket 10000;void* buyTicket(void* args) {customer* cust (customer*)args;while(true){if(g_ticket > 0){usleep(1000);cout << …...
misc流量分析
一、wireshark语法 1、wireshark过滤语法 (1)过滤IP地址 ip.srcx.x..x.x 过滤源IP地址 ip.dstx.x.x.x 过滤目的IP ip.addrx.x.x.x 过滤某个IP (2)过滤端口号 tcp.port80tcp.srcport80 显示TCP的源端口80tcp.dstport80 显示…...
Linux驱动(五):Linux2.6驱动编写之设备树
目录 前言一、设备树是个啥?二、设备树编写语法规则1.文件类型2.设备树源文件(DTS)结构3.设备树源文件(DTS)解析 三、设备树API函数1.在内核中获取设备树节点(三种)2.获取设备树节点的属性 四、…...
算法【Java】 —— 前缀和
模板引入 一维前缀和 https://www.nowcoder.com/share/jump/9257752291725692504394 解法一:暴力枚举 在每次提供 l 与 r 的时候,都从 l 开始遍历数组,直到遇到 r 停止,这个方法的时间复杂度为 O(N * q) 解法二:前…...
python网络爬虫(四)——实战练习
0.为什么要学习网络爬虫 深度学习一般过程: 收集数据,尤其是有标签、高质量的数据是一件昂贵的工作。 爬虫的过程,就是模仿浏览器的行为,往目标站点发送请求,接收服务器的响应数据,提取需要的信息,…...
tio websocket 客户端 java 代码 工具类
为了更好地组织代码并提高可复用性,我们可以将WebSocket客户端封装成一个工具类。这样可以在多个地方方便地使用WebSocket客户端功能。以下是使用tio库实现的一个WebSocket客户端工具类。 1. 添加依赖 确保项目中添加了tio的依赖。如果使用的是Maven,可以…...
通过卷积神经网络(CNN)识别和预测手写数字
一:卷积神经网络(CNN)和手写数字识别MNIST数据集的介绍 卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,它在图像和视频识别、分类和分割任务中表现出色。CNN通过模仿…...
【A题第二套完整论文已出】2024数模国赛A题第二套完整论文+可运行代码参考(无偿分享)
“板凳龙” 闹元宵路径速度问题 摘要 本文针对传统舞龙进行了轨迹分析,并针对一系列问题提出了解决方案,将这一运动进行了模型可视化。 针对问题一,我们首先对舞龙的螺线轨迹进行了建模,将直角坐标系转换为极坐标系࿰…...
一份热乎的数据分析(数仓)面试题 | 每天一点点,收获不止一点
目录 1. 已有ods层⽤⼾表为ods_online.user_info,有两个字段userid和age,现设计数仓⽤⼾表结构如 下: 2. 设计数据仓库的保单表(⾃⾏命名) 3. 根据上述两表,查询2024年8⽉份,每⽇,…...
3 html5之css新选择器和属性
要说css的变化那是发展比较快的,新增的选择器也很多,而且还有很多都是比较实用的。这里举出一些案例,看看你平时都是否用过。 1 新增的一些写法: 1.1 导入css 这个是非常好的一个变化。这样可以让我们将css拆分成公共部分或者多…...
【Kubernetes】K8s 的鉴权管理(一):基于角色的访问控制(RBAC 鉴权)
K8s 的鉴权管理(一):基于角色的访问控制(RBAC 鉴权) 1.Kubernetes 的鉴权管理1.1 审查客户端请求的属性1.2 确定请求的操作 2.基于角色的访问控制(RBAC 鉴权)2.1 基于角色的访问控制中的概念2.1…...
保研 比赛 利器: 用AI比赛助手降维打击数学建模
数学建模作为一个热门但又具有挑战性的赛道,在保研、学分加分、简历增色等方面具有独特优势。近年来,随着AI技术的发展,特别是像GPT-4模型的应用,数学建模的比赛变得不再那么“艰深”。通过利用AI比赛助手,不仅可以大大…...
秋招校招,在线性格测评应该如何应对
秋招校招,如果遇到在线测评,如何应对? 这里写个总结稿,希望对大家有些帮助。在线测评是企业深入了解求职人的渠道,如果是性格测试,会要求测试者能够快速答出,以便于反应实际情况(时间…...
chrome 插件开发入门
1. 介绍 Chrome 插件可用于在谷歌浏览器上控制当前页面的一些操作,可自主控制网页,提升效率。 平常我们可在谷歌应用商店中下载谷歌插件来增强浏览器功能,作为开发者,我们也可以自己开发一个浏览器插件来配合我们的日常学习工作…...
揭开面纱--机器学习
一、人工智能三大概念 1.1 AI、ML、DL 1.1.1 什么是人工智能? AI:Artificial Intelligence 人工智能 AI is the field that studies the synthesis and analysis of computational agents that act intelligently AI is to use computers to analog and instead…...
Python中的私有属性与方法:解锁面向对象编程的秘密
在Python的广阔世界里,面向对象编程(OOP)是一种强大而灵活的方法论,它帮助我们更好地组织代码、管理状态,并构建可复用的软件组件。而在这个框架内,私有属性与方法则是实现封装的关键机制之一。它们不仅有助…...
开篇_____何谓安卓机型“工程固件” 与其他固件的区别 作用
此系列博文将分析安卓系列机型与一些车机 wifi板子等工程固件的一些常识。从早期安卓1.0起始到目前的安卓15,一些厂家发布新机型的常规流程都是从工程机到量产的过程。在其中就需要调试各种参数以便后续的量产参数可以固定到最佳,工程固件由此诞生。 后…...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...
CTF show Web 红包题第六弹
提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...
屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!
5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...
Python如何给视频添加音频和字幕
在Python中,给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加,包括必要的代码示例和详细解释。 环境准备 在开始之前,需要安装以下Python库:…...
html-<abbr> 缩写或首字母缩略词
定义与作用 <abbr> 标签用于表示缩写或首字母缩略词,它可以帮助用户更好地理解缩写的含义,尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时,会显示一个提示框。 示例&#x…...
以光量子为例,详解量子获取方式
光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学(silicon photonics)的光波导(optical waveguide)芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中,光既是波又是粒子。光子本…...
安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖
在Vuzix M400 AR智能眼镜的助力下,卢森堡罗伯特舒曼医院(the Robert Schuman Hospitals, HRS)凭借在无菌制剂生产流程中引入增强现实技术(AR)创新项目,荣获了2024年6月7日由卢森堡医院药剂师协会࿰…...
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...
