MoCo对比损失
MoCo(Momentum Contrast,动量对比学习)是一种自监督学习方法,由Facebook AI Research提出,主要用于无监督学习视觉表示。在MoCo中,对比损失(Contrastive Loss)扮演着至关重要的角色,它帮助模型在大量的无标签数据上进行有效的预训练。以下是对MoCo对比损失的详细解析:
一、对比损失的意义
对比损失的主要目的是让模型能够区分正样本(与查询相似的样本)和负样本(与查询不相似的样本)。在MoCo中,这种区分能力是通过在特征空间中拉近正样本对之间的距离,同时推远负样本对之间的距离来实现的。具体来说,对比损失鼓励模型学习到一种特征表示,使得来自同一图像的不同视图(即正样本)在特征空间中相近,而来自不同图像的视图(即负样本)在特征空间中相远。
二、对比损失函数(InfoNCE)
MoCo中使用的对比损失函数是InfoNCE,这是一种基于噪声对比估计(Noise-Contrastive Estimation, NCE)的损失函数。InfoNCE损失函数的表达式通常如下:
其中:q 是查询向量(query representation),来自在线编码器(encoder_q)、k+是正样本键向量(positive key sample),也来自在线编码器、Queue 是负样本队列,这些视图由动量编码器(encoder_k)生成、k−是负样本键向量,来自负样本队列、τ 是温度超参数(temperature),用于控制分布的集中度。
三、MoCo中的对比损失实现
在MoCo中,对比损失的实现通常涉及以下几个步骤:
数据增强:对每一个输入图像应用两次随机的数据增强操作,生成两个不同的视图,分别作为查询和键。
特征提取:使用在线编码器和动量编码器分别提取查询和键的特征表示。
计算相似度:计算查询向量与正样本键向量之间的相似度(正样本损失),以及查询向量与负样本队列中所有键向量之间的相似度(负样本损失)。
计算InfoNCE损失:根据InfoNCE损失函数的表达式,结合正样本损失和负样本损失,计算最终的对比损失。
反向传播:将对比损失反向传播到在线编码器中,以更新其参数。动量编码器的参数则通过动量机制进行更新,即使用在线编码器参数的指数移动平均。
四、对比损失的作用
通过对比损失的训练,MoCo模型能够学习到一种鲁棒且具有判别性的特征表示。这种特征表示不仅能够在无监督预训练阶段有效地区分正负样本,还能够在后续的下游任务(如图像分类、目标检测等)中展现出良好的迁移性能。
相关文章:

MoCo对比损失
MoCo(Momentum Contrast,动量对比学习)是一种自监督学习方法,由Facebook AI Research提出,主要用于无监督学习视觉表示。在MoCo中,对比损失(Contrastive Loss)扮演着至关重要的角色&…...

01_WebRtc_一对一视频通话
文章目录 通话网页的设计客户端实现Web的API 服务端实现 2024-9-20 很久没有写博客啦,回顾总结这段时间的成果, 写下博客放松下(开始偷懒啦)主要内容:实现网页(html)打开摄像头并显示到页面需要…...

【小程序 - 大智慧】深入微信小程序的渲染周期
目录 前言应用生命周期页面的生命周期组件的生命周期渲染顺序页面路由运行机制更新机制同步更新异步更新 前言 跟 Vue、React 框架一样,微信小程序框架也存在生命周期,实质也是一堆会在特定时期执行的函数。 小程序中,生命周期主要分成了三…...
《深入了解 Linux 操作系统》
在计算机领域中,Linux 作为一种强大而重要的操作系统,有着广泛的应用场景,尤其在服务器端占据着举足轻重的地位。 一、Linux 简介 Linux 是一种操作系统,主要应用于服务器端。不同的厂商或个人会对 Linux 的内核进行封装ÿ…...
批评他人也需要技术
俗话说“人无完人,尺有所短,寸有所长”,每个人都有可能犯错误。我们犯错误,并不能说明我们一无是处;一个人做了一件好事,也不能说他做的每件事都是好的。 营造良好的氛围。一说到批评,我们许多…...

安装SQL Server遇到的问题
出现了一和二的问题,最后还是通过三完全卸载sqlserver安装成功了 一.安装过程中依次报错 1.MOF编译器无法连接WMI服务器。原因可能是语义错误(例如,与现有WMI知识库不兼容)或实际错误(例如WMI服务器启动失败)。 2.PerfLib 2.0计数器removal失败…...

java项目之编程训练系统源码(springboot)
风定落花生,歌声逐流水,大家好我是风歌,混迹在java圈的辛苦码农。今天要和大家聊的是一款基于springboot的编程训练系统。项目源码以及部署相关请联系风歌,文末附上联系信息 。 项目简介: 编程训练系统的主要使用者管…...

MySQL的登陆错误:ERROR 1049 (42000): Unknown database ‘root‘
MySQL的登陆错误:ERROR 1049 (42000): Unknown database ‘root’ 安装MySQL的时候,到网上查的命令行登陆MySQL的方法都是mysql -u root -p password mysql -r root -p 123456但是奇怪的是这条命令我输进去死活都不对,它都会要求再输入一遍…...

vue使用vue-i18n实现国际化
我使用的是vue2.6版本,具体使用其他版本可以进行修改 一、安装 npm install vue-i18n -D 二、配置 1、文件配置 ①在src下创建 i18n 目录 ②在 i18n 目录下创建 langs 文件夹 和 index.js文件,具体如下 2、index.js代码如下,这里使用了…...
微信小程序如何设置左侧导航栏跟随页面滑动
一、使用 scroll-view 组件实现页面滚动 在页面的 wxml 文件中,将需要滚动的内容包裹在scroll - view组件内,例如: <scroll-view scroll-y"true" style"height: 800rpx;"><!-- 这里放置页面的主要内容 -->…...

个人小结(2.0)
离谱,困扰着几周的问题今天偶然发现了解决方法。 问题如下:就是对应的模块引入爆红,但是单击进入引入的文件没有问题 然后它的提示是: 无法找到模块“../views/screen/index.vue”的声明文件。“c:/Users/10834/Desktop/0716_pro…...

探索自动化的魔法:Python中的pyautogui库
文章目录 探索自动化的魔法:Python中的 pyautogui 库背景:为什么选择pyautogui?pyautogui是什么?如何安装pyautogui?五个简单的库函数使用方法场景应用常见Bug及解决方案总结 探索自动化的魔法:Python中的 …...

YOLOv9改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
一、本文介绍 本文记录的是利用GsConv优化YOLOv9的颈部网络。深度可分离卷积(DSC)在轻量级模型中被广泛使用,但其在计算过程中会分离输入图像的通道信息,导致特征表示能力明显低于标准卷积(SC),…...

EasyExcel的基本使用——Java导入Excel数据
使用EasyExcel导入Excel数据有两种方式 无论哪种方式我们都需要建立Excel表格和Java对象的绑定 首先我们需要根据Excel表头定义一个对应的类 excel表示例: 对应的类: 使用ExcelProperty将excel列名和字段名绑定,括号里面填列名 package co…...
Apache Iceberg 试用
启动 spark-sql 因为 iceberg 相关的 jars 已经在 ${SPARK_HOME}/jars 目录,所以不用 --jars 或者 --package 参数。 spark-sql --master local[1] \--conf spark.sql.extensionsorg.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions \--conf spar…...

速通汇编(六)认识栈,SS、SP寄存器,push和pop指令的作用
一,栈 (一)栈的特点 栈是一种具有特殊访问方式的存储空间,特殊在于,进出这块存储空间的数据,“先进后出,后进先出” 由于栈的这个“先进后出”的特点,我们可以利用其来很好的操作内…...

【Python机器学习】NLP信息提取——值得提取的信息
目录 提取GPS信息 提取日期 如下一些关键的定量信息值得“手写”正则表达式: GPS位置;日期;价格;数字。 和上述可以通过正则表达式轻松捕获的信息相比,其他一些重要的自然语言信息需要更复杂的模式: 问…...

代理IP批理检测工具,支持socks5,socks4,http和https代理批量检测是否可用
代理IP批理检测工具,支持socks5,socks4,http和https代理批量检测是否可用 工具使用c编写: 支持ipv4及ipv6代理服务器。 支持http https socks4及socks5代理的批量检测。 支持所有windows版本运行! 导入方式支持手工选择文件及拖放文件。 导入格式支持三…...

AI视觉算法盒是什么?如何智能化升级网络摄像机,守护全方位安全
在智能化浪潮席卷全球的今天,以其创新技术引领行业变革,推出的集高效、智能、灵活于一体的AI视觉算法盒。这款革命性的产品,旨在通过智能化升级传统网络摄像机,为各行各业提供前所未有的安全监控与智能分析能力,让安全…...
【Vue】VueRouter路由
系列文章目录 第七章 VueRouter路由 文章目录 系列文章目录第一节:VueRouter基础一、安装:二、基本使用:1. 创建路由代码:Single Page Application:SPA2. 使用路由3. 展示路由: 二、嵌套路由三、路由传参1…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
VTK如何让部分单位不可见
最近遇到一个需求,需要让一个vtkDataSet中的部分单元不可见,查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行,是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示,主要是最后一个参数,透明度…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
服务器--宝塔命令
一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行! sudo su - 1. CentOS 系统: yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...
C++.OpenGL (20/64)混合(Blending)
混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...