当前位置: 首页 > news >正文

Hive企业级调优[6]——HQL语法优化之任务并行度

目录

HQL语法优化之任务并行度

优化说明

Map端并行度

 Reduce端并行度

 优化案例


HQL语法优化之任务并行度

优化说明

对于分布式计算任务来说,设置一个合理的并行度至关重要。Hive的计算任务依赖于MapReduce框架来完成,因此并行度的调整需要从Map端和Reduce端两方面考虑。

Map端并行度

Map端的并行度指的是Map任务的数量,这通常是由输入文件的切片数决定的。在大多数情况下,Map端的并行度无需手动调整。但在以下特殊情况下,可以考虑调整Map端并行度:

  1. 查询的表中存在大量小文件 按照Hadoop默认的切片策略,每个小文件会被分配给一个独立的map task进行处理。如果查询的表包含大量的小文件,则会导致启动大量的map task,造成计算资源的浪费。为了解决这个问题,可以使用Hive提供的CombineHiveInputFormat,将多个小文件合并成一个切片,从而减少map task的数量。相关参数如下:

    set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
  2. Map端有复杂的查询逻辑 如果SQL语句中包含了复杂的查询逻辑,如正则替换、JSON解析等,那么Map端的计算可能会相对较慢。在这种情况下,如果计算资源充足,可以考虑增加Map端的并行度,使每个map task处理的数据量减少,以加快计算速度。相关参数如下:

    -- 一个切片的最大值
    set mapreduce.input.fileinputformat.split.maxsize=256000000;
 Reduce端并行度

Reduce端的并行度是指Reduce任务的数量。与Map端相比,Reduce端的并行度更为关键。Reduce端的并行度可以由用户指定,也可以由Hive根据输入文件的大小自动估算。Reduce端并行度的相关参数如下:

  • set mapreduce.job.reduces; (指定Reduce端并行度,默认值为-1,表示用户未指定)
  • set hive.exec.reducers.max; (Reduce端并行度最大值)
  • set hive.exec.reducers.bytes.per.reducer; (单个Reduce Task计算的数据量,用于估算Reduce并行度)

Reduce端并行度的确定逻辑如下:

如果指定了参数mapreduce.job.reduces的值为一个非负整数,则Reduce并行度为该指定值。否则,Hive将自行估算Reduce并行度,估算逻辑如下:

假设Job输入的文件大小为totalInputBytes, 参数hive.exec.reducers.bytes.per.reducer的值为bytesPerReducer, 参数hive.exec.reducers.max的值为maxReducers

则Reduce端的并行度为:

Reduce并行度=min⁡(⌈totalInputBytesbytesPerReducer⌉,maxReducers)Reduce并行度=min(⌈bytesPerReducertotalInputBytes​⌉,maxReducers)

由于Hive自行估算Reduce并行度时,是基于整个MR Job输入文件大小的,因此在某些情况下,其估计的并行度可能并不准确。此时,用户需要根据实际情况来指定Reduce并行度。

 优化案例

示例SQL语句

hive (default)> select province_id, count(*) from order_detail group by province_id;

优化前 上述SQL语句在不指定Reduce并行度时,Hive自行估算并行度的逻辑如下:

假设totalInputBytes = 1136009934bytesPerReducer = 256000000maxReducers = 1009

经计算,Reduce并行度为:

优化思路 上述SQL语句在默认情况下,会进行map-side聚合,即Reduce端接收到的数据已经是Map端聚合后的结果。观察任务执行过程会发现,每个Map端输出的数据只有34条记录,共有5个map task。

这意味着Reduce端实际上只会接收170(34 * 5)条记录。因此理论上Reduce端并行度设置为1就足够了。在这种情况下,用户可以通过以下参数自行设置Reduce端并行度为1:

-- 指定Reduce端并行度,默认值为-1,表示用户未指定
set mapreduce.job.reduces=1;

相关文章:

Hive企业级调优[6]——HQL语法优化之任务并行度

目录 HQL语法优化之任务并行度 优化说明 Map端并行度 Reduce端并行度 优化案例 HQL语法优化之任务并行度 优化说明 对于分布式计算任务来说,设置一个合理的并行度至关重要。Hive的计算任务依赖于MapReduce框架来完成,因此并行度的调整需要从Map端和…...

Excel 冻结多行多列

背景 版本:office 2021 专业版 无法像下图内某些版本一样,识别选中框选的多行多列。 如下选中后毫无反应,点击【视图】->【冻结窗口】->【冻结窗格】后自动设置为冻结第一列。 操作 如下,要把前两排冻结起来。 选择 C1&a…...

基于微信小程序的智慧物业管理系统

作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码 精品专栏:Java精选实战项目…...

【论文笔记】BEVNeXt: Reviving Dense BEV Frameworks for 3D Object Detection

原文链接:https://arxiv.org/pdf/2312.01696 简介:最近,在摄像头3D目标检测任务中,基于查询的Transformer解码器正在超越传统密集BEV方法。但密集BEV框架有着更好的深度估计和目标定位能力,能全面精确地描绘3D场景。本…...

基于open-gpu-kernel-modules的p2p vram映射bar1提高通信效率

背景 bar1 Base Address Register 1 用于内存映射的寄存器,定义了设备的内存映射区域,BAR1专门分配给gpu的一部分内存区域,允许cpu通过pcie总线直接访问显存VRAM中的数据。但bar1的大小是有限的,在常规的4090上,bar1只…...

java之斗地主部分功能的实现

今天我们要实现斗地主中发牌和洗牌这两个功能,该如何去实现呢? 1.创建牌类:52张牌每一张牌包含两个属性:牌的大小和牌的花色。 故我们优先创建一个牌的类(Card):包含大小和花色。 public class Card { //单张牌的大小及类型/…...

我的AI工具箱Tauri版-VideoIntroductionClipCut视频介绍混剪

本教程基于自研的AI工具箱Tauri版进行VideoIntroductionClipCut视频介绍混剪。 本项目为自研的AI工具箱Tauri版中的视频剪辑模块,专注于自动生成视频介绍片段。该模块名为 VideoIntroductionClipCut,用户可以通过该工具快速进行视频的混剪和介绍内容的生…...

【鸿蒙OH-v5.0源码分析之 Linux Kernel 部分】011 - 第一个用户空间进程 init 进程 第一阶段初始化过程 源码分析

【鸿蒙OH-v5.0源码分析之 Linux Kernel 部分】011 - 第一个用户空间进程 init 进程 第一阶段初始化过程 源码分析 系列文章汇总:《鸿蒙OH-v5.0源码分析之 Uboot+Kernel 部分】000 - 文章链接汇总》 本文链接:《【鸿蒙OH-v5.0源码分析之 Linux Kernel 部分】011 - 第一个用户空…...

MyBatis 源码解析:Mapper 文件加载与解析

引言 在 MyBatis 中,Mapper 文件扮演了至关重要的角色,它通过 SQL 映射文件来定义数据库查询操作和 Java 对象之间的映射关系。Mapper 文件通常是以 XML 格式存储的,包含了 SQL 语句以及与 Java 对象的对应关系。在本篇文章中,我…...

(11)(2.1.2) DShot ESCs(二)

文章目录 前言 3 配置伺服功能 4 检查RC横幅 5 参数说明 前言 DShot 是一种数字 ESC 协议,它允许快速、高分辨率的数字通信,可以改善飞行器控制,这在多旋翼和 quadplane 应用中特别有用。 3 配置伺服功能 如上所述,如果使用…...

yolov5/8/9模型在COCO分割数据集上的应用【代码+数据集+python环境+GUI系统】

yolov5/8/9模型在COCO分割数据集上的应用【代码数据集python环境GUI系统】 yolov5/8/9模型在COCO分割数据集上的应用【代码数据集python环境GUI系统】 1.COCO数据集介绍 COCO数据集,全称为Microsoft Common Objects in Context,是微软于2014年出资标注的…...

技术周总结 09.16~09.22 周日(架构 C# 数据库)

文章目录 一、09.16 周一1.1)问题01: 软件质量属性中"质量属性场景"、"质量属性环境分析"、"质量属性效用树"、"质量属性需求用例分析"分别是什么?1.2)问题02: 软件质量属性中…...

【java实现json转化为CSV文件】

文章目录 JSON文件中的数据格式测试文件转换的接口 JSON文件中的数据格式 单条数据展开后如下: {"text": "《邪少兵王》是冰火未央写的网络小说连载于旗峰天下","spo_list":[{"predicate": "作者", "objec…...

MySQL索引知识个人笔记总结(持续整理)

本篇笔记是个人整理的索引知识总结,刚开始有点乱,后续会一直边学边整理边总结 索引(index)是帮助MySQL高效获取数据的数据结构(有序)。就好比索引就是数据的目录 索引结构 Btree索引,Hash索引,Full-text索引,R-tree(空…...

ReKep——李飞飞团队提出的让机器人具备空间智能:基于视觉语言模型GPT-4o和关系关键点约束

前言 由于工厂、车厂的任务需求场景非常明确,加之自今年年初以来,我司在机器人这个方向的持续大力度投入(包括南京、长沙两地机器人开发团队的先后组建),使得近期我司七月接到了不少来自车厂/工厂的订单,比如其中的三个例子&…...

[Java并发编程] synchronized(含与ReentrantLock的区别)

文章目录 1. synchronized与ReentrantLock的区别2. synchronized的作用3. synchronized的使用3.1 修饰实例方法,作用于当前实例,进入同步代码前需要先获取实例的锁3.2 修饰静态方法,作用于类的Class对象,进入修饰的静态方法前需要…...

spring-boot-maven-plugin插件打包和java -jar命令执行原理

文章目录 1. Maven生命周期2. jar包结构2.1 不可执jar包结构2.2 可执行jar包结构 3. spring-boot-maven-plugin插件打包4. 执行jar原理 1. Maven生命周期 Maven的生命周期有三种: clean:清除项目构建数据,较为简单,不深入探讨&a…...

Python办公自动化教程(001):PDF内容提取

1、Pdfplumber介绍 pdfplumber的github地址: https://github.com/jsvine/pdfplumber/【介绍】:pdfplumber 是一个用于处理 PDF 文件的 Python 第三方库,它提供了一种方便的方式来提取 PDF 文件中的文本、表格和其他信息。【功能】&#xff…...

HarmonyOS鸿蒙开发实战(5.0)自定义全局弹窗实践

鸿蒙HarmonyOS开发实战往期文章必看: HarmonyOS NEXT应用开发性能实践总结 最新版!“非常详细的” 鸿蒙HarmonyOS Next应用开发学习路线!(从零基础入门到精通) 非常详细的” 鸿蒙HarmonyOS Next应用开发学习路线&am…...

【AI学习】了解OpenAI o1背后的self-play RL:开启新的智能道路

在ChatGPT刚刚出来的时候,沐神关于ChatGPT有一段视频,只有几分钟,却是讲得极其透彻的一段。大概意思就是,过去的AI智能水平,比如五年前,大概相当于人类5秒钟思考的程度,包括自动驾驶&#xff0c…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

家政维修平台实战20:权限设计

目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色&#xf…...

【项目实战】通过多模态+LangGraph实现PPT生成助手

PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

三体问题详解

从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...

LLM基础1_语言模型如何处理文本

基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX(不访问内存)XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode: 2.利用 authorizationCode 获取 accessToken:文档中心 3.获取手机:文档中心 4.获取昵称头像:文档中心 首先创建 request 若要获取手机号,scope必填 phone,permissions 必填 …...

C++.OpenGL (20/64)混合(Blending)

混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统,它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间,使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的,要在 …...