当前位置: 首页 > news >正文

【砝码称重】暴力DFS(一半分)+ dp(可AC)

题目描述:

 题目分析:

 我也没有完全搞太明白,简单说说我的理解

1.dp【i】【j】表示前 i 个砝码,是否可以称出来重量为 j 的物品,如果可以的话,值为1,不可以

为0;

2.针对当前第 i 个砝码,一共有三种选择,分别是放到左边、右边又或者是不放该砝码【优先将砝码放在右边】

如题例所示:第一个砝码【重 1】可以称重 0 与 1 两个重量

此时开始处理第二个砝码,重 4 :

第一种:将砝码放在右边:那么右边砝码的重量就是 1 + 4 = 5;可以称出质量为 5 的物品,则dp【2】【5】= 1;

第二种:将砝码放在左边:那么右边砝码的重量就是 1 ,左边砝码质量为 4 ,可以称出质量为 3 的物品,则dp【2】【3】= 1;

第三种:不放砝码:可以称出质量为 1 的物品,则dp【2】【1】= 1;

但是如何用动态规划的思路将再这种思想用编程实现了:

首先,设定初始值当 0 个砝码时,只有 重量 0 可以被称出来,令dp【0】【0】= 1;其余值全部为0;

接下来:处理第一个砝码,依次判断dp【1】【j】的值,那怎么判断呢?

根据状态转移式:    dp[i][j] = max(dp[i-1][j],max(dp[i-1][j+w[i]],dp[i-1][abs(j-w[i])]));

首先是dp【1】【0】= max(dp[0][0],max(dp[0][1],dp[0][1])) = 1;

解释:dp[0][0]:既然不放第 1 个物品,质量 0 就被称出来了,那么加上砝码 1 也可以称出来质量 0 ;dp[0][1]、dp[0][1]:表示前0个砝码的组合是否可以称出质量为4的物品。那肯定不可以,所以表达式dp【1】【0】的值就是1,表示前1个砝码可以称出体积为 0 的物品;

接下来判断dp【1】【1】:前前1个砝码可以称出体积为 1 的物品

dp【1】【1】= max(dp[0][1],max(dp[0][2],dp[0][0]))

解释:dp[0][1] = 0、dp[0][2] = 0【这个式子表示将第一个砝码放在右边的情况:只要这个dp[0][2] =1,说明可以称出来质量为2的物品,那么就能dp[1][1]也一定能成功,因为将该砝码放到左边,为了保持平衡,左边要再添加重量为 1 的物品,这样也就被称出来了】意思好像是:加在右边的话,是通过左边加物品实现平衡的

dp[0][0] = 1;【表示将砝码放在左边的情况】

再举个例子dp【3】【7】:

dp【2】【7】:

dp【2】【7 + 6】:如果为真,那就说明前两个砝码可以称出质量为13的物品,那么把该砝码放到天平左侧,为了保持平衡,左侧还需要添加质量为7的物品,那么质量为7的物品就被测量出来了

dp【2】【7 - 6】:如果为真,那就说明前两个砝码可以称出质量为1的物品,那么把该砝码放到天平右侧,为了保持平衡,左侧还需要添加质量为7的物品,那么质量为7的物品就被测量出来了

题解代码:

dsp:

//砝码称重--一半的分 
#include <bits/stdc++.h>
using namespace std;
const int vinf = 1e5+100;   //砝码之和最大
int vis[vinf];     //用来标记该质量是否可以被称重
int n; 
int val[vinf]; 
void dfs(int x,int y)
{if(y==n+1){if(x>=0){vis[x]=1;cout<<x<<endl;}		return;}//开始深搜dfs(x + val[y],y + 1);  // 砝码放到左边 dfs(x - val[y],y + 1);  //砝码放到右边	dfs(x,y+1); 
}
int main(){cin>>n;//输入砝码的重量for(int i=1;i<=n;++i){//cin>>val[i];               //打印出可以撑出来的 }//已经读取了砝码的重量dfs(0,0);   //初始状态左边为已经平衡的天平左边的重量,右边为第 i 个砝码//开始枚举每一个重量int ans = 0; for(int i=1;i<vinf;++i){if(vis[i]) ans++; }cout<<endl<<ans<<endl;return 0;
}

dp:

//砝码称重--dp 
#include <bits/stdc++.h>
using namespace std;
int n,w[110];
int dp[110][100005]; 
int ans = 0;
int main(){cin>>n;int sum=0;for(int i=1;i<=n;++i){cin>>w[i];sum+=w[i];}dp[0][0]=1;for(int i=1;i<=n;++i){for(int j=0;j<=sum;++j){dp[i][j] = max(dp[i-1][j],max(dp[i-1][j+w[i]],dp[i-1][abs(j-w[i])]));}}for(int i=1;i<=sum;++i){if(dp[n][i])ans++;}cout<<ans<<endl; return 0;
}

相关文章:

【砝码称重】暴力DFS(一半分)+ dp(可AC)

题目描述&#xff1a; 题目分析&#xff1a; 我也没有完全搞太明白&#xff0c;简单说说我的理解 1.dp【i】【j】表示前 i 个砝码&#xff0c;是否可以称出来重量为 j 的物品&#xff0c;如果可以的话&#xff0c;值为1&#xff0c;不可以 为0&#xff1b; 2.针对当前第 i 个…...

科大奥瑞物理实验——霍尔效应实验

实验名称&#xff1a;霍尔效应实验 1. 实验目的&#xff1a; 了解霍尔效应测量磁场的原理和方法&#xff1b;观察磁电效应现象&#xff1b;学会用霍尔元件测量磁场及元件参数的基本方法。 2. 实验器材&#xff1a; QS-H型霍尔效应实验仪 磁针 QS-H型霍尔效应测试仪 双刀开关…...

2023_深入学习HTML5

H5 基于html5和 css3和一部分JS API 结合的开发平台(环境) 语义化标签 header : 表示头部&#xff0c;块级元素 footer &#xff1a; 表示底部&#xff0c;块级元素 section &#xff1a;区块 nav &#xff1a; 表示导航链接 aside &#xff1a; 表示侧边栏 output &am…...

Apache iotdb-web-workbench 认证绕过漏洞(CVE-2023-24829)

漏洞简介 ​​ 影响版本 0.13.0 < 漏洞版本 < 0.13.3 漏洞主要来自于 iotdb-web-workbench​ IoTDB-Workbench是IoTDB的可视化管理工具&#xff0c;可对IoTDB的数据进行增删改查、权限控制等&#xff0c;简化IoTDB的使用及学习成本。iotdb-web-workbench​ 中存在不正…...

【7-1】Redis急速入门与复习

文章目录1、分布式架构概述本阶段规划什么是分布式架构单体架构与分布式架构 对比分布式架构优点分布式架构缺点设计原则2、为何引入Redis现有架构的弊端3、什么是NoSql&#xff1f;NoSqlNoSql优点NoSql常见分类4、什么是分布式缓存&#xff0c;什么是Redis&#xff1f;什么是分…...

5、操作系统——进程间通信(3)(system V-IPC:消息队列)

目录 1、管道的缺点 2、消息队列 3、消息队列的API &#xff08;1&#xff09;获取消息队列的ID&#xff08;类似文件的描述符&#xff09;(msgget) &#xff08;2&#xff09;发送、接收消息(msgrcv) (3)获取和设置消息队列的属性&#xff08;msgctl&#xff09; 4、消息队…...

C++vector容器用法详解

一、前言vector 是封装动态数组的顺序容器&#xff0c;连续存储数据&#xff0c;所以我们不仅可以通过迭代器访问存储在 vector 容器中的数据&#xff0c;还能用指向 vector 容器中的数据的常规指针访问数据。这意味着指向 vector 容器中的数据的指针能传递给任何期待指向数组元…...

Log4j2的Loggers详解

引言 官方配置文档&#xff1a;https://logging.apache.org/log4j/2.x/manual/filters.html Loggers节点 Loggers节点常见的有两种:Root和Logger <Loggers><Logger name"org.apache.logging.log4j.core.appender.db" level"debug" additivity&qu…...

计算机视觉的应用1-OCR分栏识别:两栏识别三栏识别都可以,本地部署完美拼接

大家好&#xff0c;我是微学AI&#xff0c;今天给大家带来OCR的分栏识别。 一、文本分栏的问题 在OCR识别过程中&#xff0c;遇到文字是两个分栏的情况确实是一个比较常见的问题。通常情况下&#xff0c;OCR引擎会将文本按照从左到右&#xff0c;从上到下的顺序一行一行地识别…...

低代码平台如何选型, 43款国内外低代码平台一网打尽

目前&#xff0c;零代码技术和低代码技术越来越成熟&#xff0c;低代码平台也越来越被大家所接受&#xff0c;国内低代码平台厂商和产品层出不穷&#xff0c;到底哪家低代码平台好&#xff0c;企业如何选型&#xff0c;以下给出一些参考。 一、低代码平台如何选型 企业如何选…...

第六周作业(1.5小时)

一、PreparedStatement PreparedStatement也可以用来执行sql语句&#xff0c;但是需要注意&#xff1a;它需要用sql创建好PreparedStatement&#xff0c;而Statement不需要用sql来创建。 优点&#xff1a; 1、具有较好的可维护性和可读性&#xff0c;参数的分别插入减少了错…...

排序 (蓝桥杯) JAVA

目录题目描述&#xff1a;冒泡排序算法(排序数字&#xff0c;字符)&#xff1a;String与String buffer的区别:纯暴力破解(T到爆炸)&#xff1a;暴力破解加思考(bingo)&#xff1a;总结&#xff1a;题目描述&#xff1a; 小蓝最近学习了一些排序算法&#xff0c;其中冒泡排序让他…...

【Blender 水墨材质】实现过程剖析01

写在前面 想把Blender一位大佬演示的Blender水墨材质过程&#xff0c;在Unity用Shader重现&#xff0c;过程中会拿能拿到的节点代码举例&#xff08;ShaderGraph或者UE的都会有&#xff09;。第一步当然是要跟着人家做一遍&#xff01;我会尽可能地分析一下每一步的原理~ 教程…...

代码随想录算法训练营第五十六天|583. 两个字符串的删除操作、72. 编辑距离

​ LeetCode 583 两个字符串的删除操作 题目链接&#xff1a;https://leetcode.cn/problems/delete-operation-for-two-strings/ 思路&#xff1a; 方法一:两个子串同时删除元素 dp数组的含义 dp[i][j]dp[i][j]dp[i][j]代表以i-1为结尾的字符串word1&#xff0c;和以j-1位结…...

【ArchLinux】【KDE】Archlinux的安装与使用

文章目录开头前言所需环境演示环境相关链接安装教程在Windows环境下制作启动盘进入ArchLinux Live环境安装为硬盘分区如何新建分区&#xff1f;分区表格式化分区分区完成&#xff0c;开始安装挂载分区切换镜像源安装基本系统设置将Live环境&#xff08;当前&#xff09;挂载信息…...

Go语言精修(尚硅谷笔记)第六章

六、函数、包和错误处理 6.1 函数概念 不用函数的弊端 1&#xff09;写法可以完成功能, 但是代码冗余 2 ) 同时不利于代码维护 概念&#xff1a;为完成某一功能的程序指令(语句)的集合,称为函数。 在Go中,函数分为: 自定义函数、系统函数 基本语法 //函数的基本语法 fu…...

Photoshop的功能

Photoshop是一款功能强大的图片编辑软件&#xff0c;它提供了数百种不同的工具和特效&#xff0c;让您可以编辑图片、创建图形和设计网页等。 以下是Photoshop的一些主要功能&#xff1a; 1.图层&#xff1a;Photoshop允许您创建多个图层&#xff0c;让您可以在每一个图层上进…...

C++初阶——内存管理

目录 1. C/C内存分布 2. C语言中动态内存管理方式&#xff1a;malloc/calloc/realloc/free 3. C内存管理方式 3.1 new/delete操作内置类型 3.2 new和delete操作自定义类型 4. operator new与operator delete函数 重要 4.1 operator new与operator delete函数&#xff08…...

uds服务汇总

还有一些服务列举在下面&#xff1a; RequestDownload&#xff08;服务ID为0x34&#xff09;和RequestUpload&#xff08;服务ID为0x35&#xff09;&#xff1a;这两个服务用于在ECU和诊断器之间进行数据传输。通过 RequestDownload服务&#xff0c;诊断器可以请求ECU接收一些数…...

【深度学习】2023李宏毅homework1作业一代码详解

研一刚入门深度学习的小白一枚&#xff0c;想记录自己学习代码的经过&#xff0c;理解每行代码的意思&#xff0c;这样整理方便日后复习也方便理清自己的思路。感觉每天时间都不够用了&#xff01;&#xff01;加油啦。 第一部分&#xff1a;导入模块 导入各个模块&#xff0…...

【软件测试】基础知识第二篇

文章目录一. 开发模型1. 瀑布模型2. 螺旋模型3. 增量和迭代模型3.1 增量模型3.2 迭代模型3.3 增量和迭代模型的区别4. 敏捷模型4.1 敏捷宣言4.2 scrum模型二. 开发模型V 模型W 模型一. 开发模型 1. 瀑布模型 瀑布模型在软件工程中占有重要地位&#xff0c;是所有其他模型的基…...

Java中File类以及初步认识流

1、File类操作文件或目录属性 &#xff08;1&#xff09;在Java程序中通过使用java.io包提供的一些接口和类&#xff0c;对计算机中的文件进行基本的操作&#xff0c;包括对文件和目录属性的操作、对文件读写的操作&#xff1b; &#xff08;2&#xff09;File对象既可以表示…...

【C语言】文件操作详细讲解

本章要分享的内容是C语言中文件操作的内容&#xff0c;为了方便大家学习&#xff0c;目录如下 目录 1.为什么要使用文件 2.什么是文件 2.1 程序文件 2.2 数据文件 2.3 文件名 3.文件的打开和关闭 3.1文件指针 3.2打开和关闭 4.文件的顺序读写 4.1顺序读写函数介绍…...

爱奇艺万能联播使用教程

众所周知&#xff0c;爱奇艺是百度旗下的一款产品&#xff0c;所以今天用爱奇艺万能联播的方法实现下载百度网盘&#xff0c;并没有破解百度网盘&#xff0c;是官方正版下载渠道。软件是官方版本&#xff0c;大家双击安装即可。 安装完成以后&#xff0c;在软件中就有了“访问网…...

真题讲解-软件设计(三十七)

数据流图DFD&#xff08;真题讲解&#xff09;-软件设计&#xff08;三十六&#xff09;https://blog.csdn.net/ke1ying/article/details/129803164 在网络安全管理中&#xff0c;加强内防内控可采取的策略是&#xff1f; 终端访问权限&#xff0c;防止合法终端越权访问。加强…...

Android 上的协程(第一部分):了解背景

本系列文章 Android 上的协程&#xff08;第一部分&#xff09;&#xff1a;了解背景 Android 上的协程&#xff08;第二部分&#xff09;&#xff1a;入门 Android上的协程 (第三部分): 实际应用 Android 上的协程&#xff08;第一部分&#xff09;&#xff1a;了解背景 这篇…...

【H3C】VRRP2 及Vrrp3基本原理 华为同用

文章目录VRRP2基本概念报文格式主备选举规则&#xff08;优先级&#xff09;0和255双Master原因VRRP认证VRRP状态机抢占模式VRRP主备切换状态项目场景VRRP3H3C参考致谢VRRP2 基本概念 VRRP路由器&#xff08;VRRP Router&#xff09;&#xff1a;运行VRRP的设备&#xff0c;它…...

【数据库】SQL语法

目录 1. 常用数据类型 2. 约束 3. 数据库操作 4. 数据表操作 查看表 创建表格 添加数据 删除数据 修改数据 单表查询数据 多表查询数据 模糊查询 关联查询 连接查询 数据查询的执行顺序 4. 内置函数 1. 常用数据类型 整型&#xff1a;int浮点型&#xff1a;flo…...

JavaEE简单示例——文件的上传和下载

文件的上传和下载的实现原理的简单介绍 表单的构成 首先,我们先来介绍我们的需要用到的表单,在这个表单中,首先值得我们注意的就是,在type为file的input标签中.这个控件是我们主要用来选择上传的文件的, 除此之外,我们要想实现文件的上传,还需要将method的属性的值设置为post…...

【C语言督学训练营 第五天】数组字符串相关知识

文章目录前言一、数组的定义1.一维数组①.如何定义②.声明规则③.内存分布④.初始化方法2.二维数组3.高维数组二、访问数组元素相关问题1.访问越界2.数组的传递三、Scanf与字符数组1.字符数组初始化2.scanf读取字符四、字符数组相关函数前言 今天的C语言训练营没有安排高维数组…...