当前位置: 首页 > news >正文

【算法】分治:归并排序之LCR 170.交易逆序对的总数(hard)

系列专栏

双指针

模拟算法

分治思想


目录

1、题目链接

2、题目介绍

3、解法

4、代码


1、题目链接

LCR 159. 库存管理 III - 力扣(LeetCode)

2、题目介绍

在股票交易中,如果前一天的股价高于后一天的股价,则可以认为存在一个「交易逆序对」。请设计一个程序,输入一段时间内的股票交易记录 record,返回其中存在的「交易逆序对」总数。

示例 1:

输入:record = [9, 7, 5, 4, 6]
输出:8
解释:交易中的逆序对为 (9, 7), (9, 5), (9, 4), (9, 6), (7, 5), (7, 4), (7, 6), (5, 4)。

限制:

0 <= record.length <= 50000

3、解法

  1. 逆序对的计算
    在归并排序的合并步骤中,当我们将两个已排序的子数组合并成一个有序数组时,如果左侧子数组中的某个元素大于右侧子数组中的某个元素,那么左侧子数组中该元素之后的所有元素(包括该元素本身)都将与右侧子数组中的该元素形成逆序对。因此,我们可以通过计算这样的元素对数来统计逆序对的总数。

  2. 具体实现

    • 分割:将数组分成左右两部分,递归地对它们进行排序。
    • 合并与计数:在合并过程中,使用两个指针分别指向左右子数组的起始位置,比较两个指针所指向的元素。如果左侧元素大于右侧元素,则左侧元素及其之后的所有元素都将与右侧当前元素形成逆序对,因此逆序对数增加 mid - cur1 + 1mid 是左右子数组的分界点,cur1 是左侧子数组的当前指针位置)。然后,将较小的元素放入临时数组 tmp 中,并移动相应的指针。
    • 复原:将临时数组 tmp 中的元素复制回原数组 record,以完成排序和逆序对的计算。
    • 时间复杂度:归并排序的时间复杂度为 O(n log n),其中 n 是数组的长度。在合并过程中,我们遍历了每个元素一次,因此计算逆序对的额外时间复杂度也是 O(n log n)。
    • 空间复杂度:归并排序需要额外的空间来存储临时数组 tmp,其大小为 n,因此空间复杂度为 O(n)。

4、代码

//归并排序
//升序
class Solution {vector<int> tmp;
public:int reversePairs(vector<int>& record) {tmp.resize(record.size());return mergeSort(record, 0, record.size() - 1);}// 查找区间内的逆序对总数(归并排序思想)int mergeSort(vector<int>& record, int left, int right){if (left >= right) return 0;// 1. 找中点将数组分成两部分// [left,mid] [mid+1,right]int mid = (right - left) / 2 + left;int ret = 0;// 2. 左边的个数 + 排序 ,右边的个数 + 排序ret += mergeSort(record, left, mid);ret += mergeSort(record, mid + 1, right);// 3. 一左一右的个数(升序版本)int cur1 = left, cur2 = mid + 1, i = 0;while (cur1 <= mid && cur2 <= right){if (record[cur1] <= record[cur2]) tmp[i++] = record[cur1++];else{ret += mid - cur1 + 1;//合并过程中计数,逆序对tmp[i++] = record[cur2++];}}// 4. 处理排序过程while (cur1 <= mid) tmp[i++] = record[cur1++];while (cur2 <= right) tmp[i++] = record[cur2++];// 复原for (int i = left; i <= right; i++)record[i] = tmp[i - left];return ret;}
};

💗感谢阅读!💗

相关文章:

【算法】分治:归并排序之LCR 170.交易逆序对的总数(hard)

系列专栏 双指针 模拟算法 分治思想 目录 1、题目链接 2、题目介绍 3、解法 4、代码 1、题目链接 LCR 159. 库存管理 III - 力扣&#xff08;LeetCode&#xff09; 2、题目介绍 在股票交易中&#xff0c;如果前一天的股价高于后一天的股价&#xff0c;则可以认为存在一…...

2024.9.28 作业+思维导图

widget.cpp #include "widget.h"Widget::Widget(QWidget *parent): QWidget(parent) {this->setFixedSize(320,448);this->setWindowFlag(Qt::FramelessWindowHint);//QPushButtonQPushButton *PushButton1 new QPushButton("登录",this);PushButto…...

树莓派外挂Camera(基操)(TODO)

&#xff08;TODO&#xff09; 手上有OV5647&#xff0c;OV2640&#xff0c;看这次能不能驱动吧。。。 树莓派3B CSI摄像头配置-阿里云开发者社区 你可以使用树莓派3B的CSI接口连接相机模块。首先&#xff0c;确保相机模块正确连接到CSI接口。然后&#xff0c;使用raspi-config…...

讯飞星火编排创建智能体学习(二)决策节点

目录 概述 决策节点 文生图节点 连接节点 测试结果 概述 在上一篇博文讯飞星火编排创建智能体学习&#xff08;一&#xff09;最简单的智能体构建-CSDN博客&#xff0c;我介绍了编排创作智能体&#xff0c;这篇来介绍一下“决策节点”。 决策节点 在编排创作智能体中&…...

YOLOv5改进:Unified-loU,用于高品质目标检测的统一loU ,2024年8月最新IoU

💡💡💡现有IoU问题点:IoU (Intersection over Union)作为模型训练的关键,极大地显示了当前预测框与Ground Truth框之间的差异。后续研究者不断在IoU中加入更多的考虑因素,如中心距离、纵横比等。然而,仅仅提炼几何差异是有上限的;而且新的对价指数与借据本身存在潜在…...

力扣 简单 112.路径总和

文章目录 题目介绍题解 题目介绍 题解 class Solution {public boolean hasPathSum(TreeNode root, int targetSum) {// 只在最开始的时候判断树是否为空if (root null) {return false;}targetSum - root.val;if (root.left null && root.right null) { // root 是…...

OpenMV与STM32通信全面指南

目录 引言 一、OpenMV和STM32简介 1.1 OpenMV简介 1.2 STM32简介 二、通信协议概述 三、硬件连接 3.1 硬件准备 3.2 引脚连接 四、软件环境搭建 4.1 OpenMV IDE安装 4.2 STM32开发环境 五、UART通信实现 5.1 OpenMV端编程 5.2 STM32端编程 六、SPI通信实现 6.1 …...

Python库matplotlib之二

Python库matplotlib之二 figureAxessubplot figure matplotlib.pyplot.figure(numNone, figsizeNone, dpiNone, facecolorNone, edgecolorNone, frameonTrue, FigureClass<class ‘matplotlib.figure.Figure’>, clearFalse, **kwargs) num&#xff0c;int 或 str 或 fi…...

DAY17||654.最大二叉树 |617.合并二叉树 |700.二叉搜索树中的搜索 |

654.最大二叉树 题目&#xff1a;654. 最大二叉树 - 力扣&#xff08;LeetCode&#xff09; 给定一个不含重复元素的整数数组。一个以此数组构建的最大二叉树定义如下&#xff1a; 二叉树的根是数组中的最大元素。左子树是通过数组中最大值左边部分构造出的最大二叉树。右子树…...

读构建可扩展分布式系统:方法与实践16读后总结与感想兼导读

1. 基本信息 构建可扩展分布式系统&#xff1a;方法与实践 [美]伊恩戈顿(Ian Gorton)著 机械工业出版社,2024年5月出版 1.1. 读薄率 书籍总字数188千字&#xff0c;笔记总字数49688字。 读薄率49688188000≈26.4% 1.2. 读厚方向 设计模式&#xff1a;可复用面向对象软件的…...

Anaconda 安装

目录 - [简介](#简介) - [安装Anaconda](#安装anaconda) - [启动Anaconda Navigator](#启动anaconda-navigator) - [创建环境](#创建环境) - [管理包](#管理包) - [常用命令行操作](#常用命令行操作) - [Jupyter Notebook 快速入门](#jupyter-notebook-快速入门) - [结…...

优雅使用 MapStruct 进行类复制

前言 在项目中&#xff0c;常常会遇到从数据库读取数据后不能直接返回给前端展示的情况&#xff0c;因为还需要对字段进行加工&#xff0c;比如去除时间戳记录、隐藏敏感数据等。传统的处理方式是创建一个新类&#xff0c;然后编写大量的 get/set 方法进行赋值&#xff0c;若字…...

第19周JavaWeb编程实战-MyBatis实现OA系统 1-OA系统

办公OA系统项目开发 课程简介 本课程将通过慕课办公OA平台的开发&#xff0c;讲解实际项目开发中必须掌握的技能和设计技巧。课程分为三个主要阶段&#xff1a; 需求说明及环境准备&#xff1a; 基于RBAC的访问控制模块开发&#xff1a; 多级请假审批流程开发&#xff1a; …...

仿黑神话悟空跑动-脚下波纹特效(键盘wasd控制走动)

vue使用three.js实现仿黑神话悟空跑动-脚下波纹特效 玩家角色的正面始终朝向鼠标方向&#xff0c;且在按下 W 键时&#xff0c;玩家角色会朝着鼠标方向前进 空格建跳跃 <template><div ref"container" class"container" click"onClick"…...

`torch.utils.data`模块

在PyTorch中&#xff0c;torch.utils.data模块提供了许多有用的工具来处理和加载数据。以下是对您提到的DataLoader, Subset, BatchSampler, SubsetRandomSampler, 和 SequentialSampler的详细解释以及使用示例。 1. DataLoader DataLoader是PyTorch中用于加载数据的一个非常…...

深入理解 `strncat()` 函数:安全拼接字符串

目录&#xff1a; 前言一、 strncat() 函数的基本用法二、 示例代码三、 strncat() 与 strcat() 的区别四、 注意事项五、 实际应用场景总结 前言 在C语言中&#xff0c;字符串操作是编程中非常常见的需求。strncat() 函数是标准库中用于字符串拼接的一个重要函数&#xff0c;…...

OpenCV_自定义线性滤波(filter2D)应用详解

OpenCV filter2D将图像与内核进行卷积&#xff0c;将任意线性滤波器应用于图像。支持就地操作。当孔径部分位于图像之外时&#xff0c;该函数根据指定的边界模式插值异常像素值。 卷积核本质上是一个固定大小的系数数组&#xff0c;数组中的某个元素被作为锚点&#xff08;一般…...

设计模式之装饰模式(Decorator)

前言 这个模式带给我们有关组合跟继承非常多的思考 定义 “单一职责” 模式。动态&#xff08;组合&#xff09;的给一个对象增加一些额外的职责。就增加功能而言&#xff0c;Decorator模式比生成子类&#xff08;继承&#xff09;更为灵活&#xff08;消除重复代码 & 减少…...

大数据-146 Apache Kudu 安装运行 Dockerfile 模拟集群 启动测试

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; 目前已经更新到了&#xff1a; Hadoop&#xff08;已更完&#xff09;HDFS&#xff08;已更完&#xff09;MapReduce&#xff08;已更完&am…...

React入门准备

React是什么 React是一个用于构建用户界面的JavaScript框架&#xff0c;用于构建“可预期的”和“声明式的”Web用户界面&#xff0c;特别适合于构建那些数据会随时间改变的大型应用的用户界面。 它起源于Facebook的内部项目&#xff0c;因为对市场上所有JavaScript MVC框架都…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作&#xff1a; 1&#xff09;、切换集群 2&#xff09;、切换节点 3&#xff09;、切换到 apparmor 的目录 4&#xff09;、执行 apparmor 策略模块 5&#xff09;、修改 pod 文件 6&#xff09;、…...

MFC内存泄露

1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06&#xff08;十亿美元&#xff09;。漏洞扫描服务市场行业预计将从 2024 年的 3.48&#xff08;十亿美元&#xff09;增长到 2032 年的 9.54&#xff08;十亿美元&#xff09;。预测期内漏洞扫描服务市场 CAGR&#xff08;增长率&…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序

一、开发准备 ​​环境搭建​​&#xff1a; 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 ​​项目创建​​&#xff1a; File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

rknn toolkit2搭建和推理

安装Miniconda Miniconda - Anaconda Miniconda 选择一个 新的 版本 &#xff0c;不用和RKNN的python版本保持一致 使用 ./xxx.sh进行安装 下面配置一下载源 # 清华大学源&#xff08;最常用&#xff09; conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...

快速排序算法改进:随机快排-荷兰国旗划分详解

随机快速排序-荷兰国旗划分算法详解 一、基础知识回顾1.1 快速排序简介1.2 荷兰国旗问题 二、随机快排 - 荷兰国旗划分原理2.1 随机化枢轴选择2.2 荷兰国旗划分过程2.3 结合随机快排与荷兰国旗划分 三、代码实现3.1 Python实现3.2 Java实现3.3 C实现 四、性能分析4.1 时间复杂度…...

相关类相关的可视化图像总结

目录 一、散点图 二、气泡图 三、相关图 四、热力图 五、二维密度图 六、多模态二维密度图 七、雷达图 八、桑基图 九、总结 一、散点图 特点 通过点的位置展示两个连续变量之间的关系&#xff0c;可直观判断线性相关、非线性相关或无相关关系&#xff0c;点的分布密…...

如何通过git命令查看项目连接的仓库地址?

要通过 Git 命令查看项目连接的仓库地址&#xff0c;您可以使用以下几种方法&#xff1a; 1. 查看所有远程仓库地址 使用 git remote -v 命令&#xff0c;它会显示项目中配置的所有远程仓库及其对应的 URL&#xff1a; git remote -v输出示例&#xff1a; origin https://…...