当前位置: 首页 > news >正文

Android Studio Dolphin 中Gradle下载慢的解决方法

我用的版本Android Studio Dolphin | 2021.3.1 Patch 1

1.Gradle自身的版本下载慢

解决办法:修改gradle\wrapper\gradle-wrapper.properties中的distributionUrl

https\://services.gradle.org/distributionshttps\://mirrors.cloud.tencent.com/gradle

distributionUrl=https\://mirrors.cloud.tencent.com/gradle/gradle-7.4-bin.zip

2.Gradle下载依赖包慢

解决办法:修改settings.gradle

pluginManagement {repositories {//下面三个是我们自己加的maven { url 'https://maven.aliyun.com/repository/public/' }maven { url 'https://maven.aliyun.com/repository/gradle-plugin' }maven { url 'https://maven.aliyun.com/repository/central' }gradlePluginPortal()google()mavenCentral()}
}
dependencyResolutionManagement {repositoriesMode.set(RepositoriesMode.FAIL_ON_PROJECT_REPOS)repositories {//下面两个是我们自己加的maven { url 'https://maven.aliyun.com/repository/public/' }maven { url 'https://maven.aliyun.com/repository/central' }google()mavenCentral()}
}
rootProject.name = "MyApplication2"
include ':app'

相关文章:

Android Studio Dolphin 中Gradle下载慢的解决方法

我用的版本Android Studio Dolphin | 2021.3.1 Patch 1 1.Gradle自身的版本下载慢 解决办法:修改gradle\wrapper\gradle-wrapper.properties中的distributionUrl 将https\://services.gradle.org/distributions为https\://mirrors.cloud.tencent.com/gradle dis…...

Excel实现省-市-区/县级联

数据准备 准备省份-城市映射数据,如下: 新建sheet页,命名为:省-市数据源,然后准备数据,如下所示: 准备城市-区|县映射数据,如下: 新建sheet页,命名为&#x…...

【优化代码结构】函数的参数归一化

某些封装的函数,其参数具有多样性,会导致函数中会增加非常多的分支,比如下面这个 format 函数有如下几种参数方式,其中 formatter 会有很多种情况 date:日期对象formatter: ‘date’:格式化日期…...

CSS中height设置100vh和100%的区别

文章目录 CSS中height设置100vh和100%的区别一、引言二、高度设置的区别1、100%1.1、父元素高度固定1.2、父元素高度未定义 2、100vh2.1、视口高度2.2、不受父元素限制 三、总结 CSS中height设置100vh和100%的区别 一、引言 在前端开发中,我们经常需要设置元素的高…...

红米k60至尊版工程固件 MTK芯片 资源预览 刷写说明 与nv损坏修复去除电阻图示

红米k60至尊版机型代码为:corot。 搭载了联发科天玑9200+处理器。此固件mtk引导为MT6985。博文将简单说明此固件的一些特点与刷写注意事项。对于NV损坏的机型。展示修改校验电阻的图示。方便改写参数等 通过博文了解 1💝💝💝-----此机型工程固件的资源刷写注意事项 2…...

QEMU使用Qemu-Guest-Agent传输文件、执行指令等

简介 之前介绍过qemu传输文件,使用的挂载 / samba方式 :Qemu和宿主机不使用外网进行文件传输。 这是一种方式,这里还有另一种方式:使用Qemu-Guest-Agent,后面简称qga。 官网介绍:https://www.qemu.org/d…...

【漏洞复现】金和OA C6 GeneralXmlhttpPage.aspx Sql注入漏洞

免责声明: 本文旨在提供有关特定漏洞的信息,以帮助用户了解潜在风险。发布此信息旨在促进网络安全意识和技术进步,并非出于恶意。读者应理解,利用本文提到的漏洞或进行相关测试可能违反法律或服务协议。未经授权访问系统、网络或应用程序可能导致法律责任或严重后果…...

复数表示的电场

Exm加是复振幅,这是用复数表示电场,并提取只与空间有关的项复振幅就是复数表示电场,且把与空间xyz有关的量提取出来 经过验证实数E0cos(wtδx)对t求导,等于E0e^j(wtδx)对t求导再取实部 实数表示电磁波cos…...

常用快捷键整理

用加粗标注的是我个人使用时常用的,其实这个全凭个人喜好,大家可以熟悉一下自己喜欢的,都多试试,把觉得有用的记一下,多使用,后续写代码效率就会提高一些) 常用 VS 运行调试程序快捷键 编译 . 编译程序&a…...

【Transformer】长距离依赖

在自然语言处理(NLP)中,长距离依赖(Long-Range Dependencies)指的是在文本中相隔较远的两个或多个元素之间的依赖关系。这些依赖关系可以是语法上的,也可以是语义上的。例如,在句子中&#xff0…...

Git傻傻分不清楚(下)

进入Idea编译器 File -> New -> Project from Version Control -> URL (这个路径是要拉取项目的Github路径哦~) 设置成maven项目...

golang学习笔记27-反射【重要】

本节也是GO核心部分,很重要。包括基本类型的反射,结构体类型的反射,类别方法Kind(),修改变量的值。 目录 一、概念,基本类型的反射二、结构体类型的反射三、类别方法Kind()四、修改变量的值 一、概念,基本…...

利用Puppeteer-Har记录与分析网页抓取中的性能数据

引言 在现代网页抓取中,性能数据的记录与分析是优化抓取效率和质量的重要环节。本文将介绍如何利用Puppeteer-Har工具记录与分析网页抓取中的性能数据,并通过实例展示如何实现这一过程。 Puppeteer-Har简介 Puppeteer是一个Node.js库,提供…...

YOLOv5改进系列(1)——添加CBAM注意力机制

一、如何理解注意力机制 假设你正在阅读一本书,同时有人在你旁边说话。当你听到某些关键字时,比如“你的名字”或者“你感兴趣的话题”,你会自动把注意力从书上转移到他们的谈话上,尽管你并没有完全忽略书本的内容。这就是注意力机…...

无头单向非循环java版的模拟实现

【本节目标】 1.ArrayList的缺陷 2.链表 1. ArrayList的缺陷 上节课已经熟悉了 ArrayList 的使用&#xff0c;并且进行了简单模拟实现。通过源码知道&#xff0c; ArrayList 底层使用数组来存储元素&#xff1a; public class ArrayList<E> extends AbstractList<…...

Bert Score-文本相似性评估

Bert Score Bert Score 是基于BERT模型的一种方法。它通过计算两个句子在BERT模型中的嵌入编码之间的余弦相似度来评估它们的相似度。BERTScore考虑了上下文信息和语义信息&#xff0c;因此能够更准确地衡量句子之间的相似度。 安装 pip install bert-score 使用例子 一个…...

Pyenv管理Python版本,conda之外的另一套python版本管理解决方案

简介 Pyenv 是一个 python 解释器管理工具&#xff0c;可以对计算机中的多个 python 版本进行管理和切换。为什么要用 pyenv 管理python呢&#xff0c;用过的 python 人都知道&#xff0c;python 虽然是易用而强大的编程语言&#xff0c;但是 python 解释器却有多个版本&#…...

快速实现AI搜索!Fivetran 支持 Milvus 作为数据迁移目标

Fivetran 现已支持 Milvus 向量数据库作为数据迁移的目标&#xff0c;能够有效简化 RAG 应用和 AI 搜索中数据源接入的流程。 数据是 AI 应用的支柱&#xff0c;无缝连接数据是充分释放数据潜力的关键。非结构化数据对于企业搜索和检索增强生成&#xff08;RAG&#xff09;聊天…...

css的页面布局属性

CSS Flexbox&#xff08;Flexible Box Layout&#xff09;是一种用于页面布局的CSS3规范&#xff0c;它提供了一种更加高效的方式来布置、对齐和分配容器内元素的空间&#xff0c;即使它们的大小是未知或者动态变化的。Flexbox很容易处理一维布局&#xff0c;即在一个方向上&am…...

RTE 大会报名丨AI 时代新基建:云边端架构和 AI Infra ,RTE2024 技术专场第二弹!

所有 AI Infra 都在探寻规格和性能的最佳平衡&#xff0c;如何构建高可用的云边端协同架构&#xff1f; 语音 AI 实现 human-like 的最后一步是什么&#xff1f; AI 视频的爆炸增长&#xff0c;给新一代编解码技术提出了什么新挑战&#xff1f; 当大模型进化到实时多模态&am…...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用&#xff0c;操作系统&#xff1a;Ubuntu24.04&#xff0c;Neofj版本&#xff1a;2025.04.0。 Apt安装 Neofj可以进行官网安装&#xff1a;Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动&#xff08;如演唱会、马拉松赛事、高考中考等&#xff09;期间&#xff0c;城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例&#xff0c;暖城商圈曾因观众集中离场导致周边…...

高频面试之3Zookeeper

高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个&#xff1f;3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制&#xff08;过半机制&#xff0…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile&#xff0c;新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案

JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停​​ 1. ​​安全点(Safepoint)阻塞​​ ​​现象​​:JVM暂停但无GC日志,日志显示No GCs detected。​​原因​​:JVM等待所有线程进入安全点(如…...

从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障

关键领域软件测试的"安全密码"&#xff1a;Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力&#xff0c;从金融交易到交通管控&#xff0c;这些关乎国计民生的关键领域…...

数据结构:泰勒展开式:霍纳法则(Horner‘s Rule)

目录 &#x1f50d; 若用递归计算每一项&#xff0c;会发生什么&#xff1f; Horners Rule&#xff08;霍纳法则&#xff09; 第一步&#xff1a;我们从最原始的泰勒公式出发 第二步&#xff1a;从形式上重新观察展开式 &#x1f31f; 第三步&#xff1a;引出霍纳法则&…...

李沐--动手学深度学习--GRU

1.GRU从零开始实现 #9.1.2GRU从零开始实现 import torch from torch import nn from d2l import torch as d2l#首先读取 8.5节中使用的时间机器数据集 batch_size,num_steps 32,35 train_iter,vocab d2l.load_data_time_machine(batch_size,num_steps) #初始化模型参数 def …...