【模板】树状数组
目录:
单点修改,区间查询:
题目描述:
lowbit()运算:
插入、修改单点数据:
计算前缀和:
完整代码:
区间修改,单点查询:
计算差分数组:
计算每个点的值:
完整代码:
单点修改,区间查询:
题目描述:
如题,已知一个数列,你需要进行下面两种操作:
-
将某一个数加上 x
-
求出某区间每一个数的和
输入格式
第一行包含两个正整数 n, m,分别表示该数列数字的个数和操作的总个数。
第二行包含 n 个用空格分隔的整数,其中第 i 个数字表示数列第 i 项的初始值。
接下来 m 行每行包含 3 个整数,表示一个操作,具体如下:
-
1 x k含义:将第 x 个数加上 k -
2 x y含义:输出区间 [x, y] 内每个数的和
输出格式
输出包含若干行整数,即为所有操作 2 的结果。
lowbit()运算:
//非负整数n在二进制表示下最低位1及其后面的0构成的数值
//eg.lowbit(12) = lowbit((1100)2) = (100)2 = 4
//将1100按位取反后加一得到0100,会发现除了最低位的一和后面的零,其余位上与原数均相反
//故两者按位与后正好得到最低位1及其后面的0构成的数值
//又取反加一为补码,故lowbit为k & -k
int lowbit(int k) {return k & -k;
}
插入、修改单点数据:

//如图:
//tree[x]保存以x为根的子树中叶节点值的和
//将x转化为二进制后,发现每一层的末尾的零的个数都相同
//且tree[x]覆盖的长度即为lowbit(x)的值
//tree[x]的父节点为tree[x + lowbit(x)]
void add(int x, int k) {while(x <= n) {tree[x] += k;x += lowbit(x);}
}
计算前缀和:
//由图可知,若求前7项的和,则该值为tree[7] + tree[6] + tree[4]
//故,通过循环可以求出结果
int sum(int x) {int ans = 0;while(x != 0) {ans += tree[x];x -= lowbit(x);}return ans;
}
完整代码:
#include <bits/stdc++.h>
using namespace std;
const int N = 5e5 + 10;
int n, m, a, flag, p, q, tree[N];int lowbit(int k) {return k & -k;
}void add(int x, int k) {while(x <= n) {tree[x] += k;x += lowbit(x);}
}int sum(int x) {int ans = 0;while(x != 0) {ans += tree[x];x -= lowbit(x);}return ans;
}int main() {scanf("%d %d", &n, &m);for(int i = 1; i <= n; ++i) {scanf("%d", &a);add(i, a);}for(int i = 1; i <= m; ++i) {scanf("%d %d %d", &flag, &p, &q);if(flag == 1)add(p, q);elseprintf("%d\n", sum(q) - sum(p - 1));}return 0;
}
区间修改,单点查询:
计算差分数组:
//与单点修改、区间查询类似
void add(int x, int k) {while(x <= n) {tree[x] += k;x += lowbit(x);}
}
计算每个点的值:
//与单点修改、区间查询类似
//此时计算的结果为每个点的值
int query(int x) {int ans = 0;while(x != 0) {ans += tree[x];x -= lowbit(x);}return ans;
}
完整代码:
#include <bits/stdc++.h>
using namespace std;
const int N = 5e5 + 10;
int n, m, now, last, flag, p, q, num, tree[N];int lowbit(int k) {return k & -k;
}void add(int x, int k) {while(x <= n) {tree[x] += k;x += lowbit(x);}
}int query(int x) {int ans = 0;while(x != 0) {ans += tree[x];x -= lowbit(x);}return ans;
}int main() {scanf("%d %d", &n, &m);//计算差分数组,将相差的值放入数组中//eg.原本的数组应为a[] = {1, 6, 8, 5, 10}//则差分数组应为b[] = {1, 5, 2, -3, 5}for(int i = 1; i <= n; ++i) {scanf("%d", &now);add(i, now - last);last = now;}for(int i = 1; i <= m; ++i) {scanf("%d", &flag);//若要修改区间[p, q]的值//例如上述举的例子,若要将区间[2, 4]均加上3//则原数组变为a[] = {1, 9, 11, 8, 10}//差分数组变为b[] = {1, 8, 2, -3, 2}//即对差分数组来说只需修改下标为p的值,和下标为q + 1的值if(flag == 1) {scanf("%d %d %d", &p, &q, &num);add(p, num);add(q + 1, -num);}//若查询某个点的值//前p个差分数组的值相加即为该点的值//与单点修改、区间查询中的求前缀和类似else {scanf("%d", &p);printf("%d\n", query(p));}}return 0;
}
相关文章:
【模板】树状数组
目录: 单点修改,区间查询: 题目描述: lowbit()运算: 插入、修改单点数据: 计算前缀和: 完整代码: 区间修改,单点查询: 计算差分数组: 计算每个点的…...
网站都变成灰色了,怎么实现的?
有些时候我们需要把网站页面变成黑白色或灰色,特别是对于一些需要悼念的日子,以及一些影响力很大的伟人逝世或纪念日的时候,都会让网站的全部网页变成灰色(黑白色),以表示我们对逝者或者英雄的缅怀和悼念。…...
NeRF详解
论文标题:《NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis》 论文地址:https://arxiv.org/abs/2003.08934 推荐代码:https://github.com/yenchenlin/nerf-pytorch 文章目录前言隐式表达NeRF的训练位置编码体渲染&…...
Java之静态代码块和静态类、静态导入
前言 在上一篇文章中给大家讲解了static静态关键字,以及静态变量、静态常量和静态方法等内容。但是关于static,还有其他的一些内容,比如静态类、静态代码块和静态导入等,接下来给大家继续分析讲解。我们一起来看看这些内容都是怎…...
Python3 File isatty() 、os.chflags()方法
Python3 File isatty() 方法Python3 File(文件) 方法概述isatty() 方法检测文件是否连接到一个终端设备,如果是返回 True,否则返回 False。语法isatty() 方法语法如下:fileObject.isatty(); 参数无返回值如果连接到一个终端设备返回 True&…...
【SH_CO_TMT_PACKAGE保留60天数据和增加索引】
1. 保留60天数据 DELETE FROM SH_CO_TMT_PACKAGE WHERE CREATED_ < SYSDATE - 195SH_CO_TMT_PACKAGE 这个表是tmt的数据统计表,数据量极大,大概有1500W 里头的数据都是从TMT机台运行状况表(比如满管率,断丝数,下次落纱时间)同步过来的。 朗通针对这些数据,做了个…...
2022蓝桥杯省赛——数位排序
问题描述 小蓝对一个数的数位之和很感兴趣, 今天他要按照数位之和给数排序。当两个数各个数位之和不同时, 将数位和较小的排在前面, 当数位之和相等时, 将数值小的排在前面。 例如, 2022 排在 409 前面, 因为 2022 的数位之和是 6, 小于 409 的数位之和 13 。 又如, 6 排在 …...
弥散磁共振成像在神经科学中的应用
导读弥散加权成像技术突破了神经科学的界限,使我们能够检查活体人脑的白质微观结构。这为基本的神经科学问题提供了答案,开启了一个以前基本上难以接近的新研究领域。本研究简要总结了神经科学历史上提出的关于大脑白质的关键问题。然后,阐述…...
多进程(python)
参考: https://www.liaoxuefeng.com/wiki/1016959663602400/1017627212385376 个人封装的python多进程处理类,跑满CPU,优化性能 概念 进程: 对于操作系统来说,一个任务就是一个进程(Process),…...
利用Kali工具进行信息收集(35)
预备知识 Kali是一款开源的安全漏洞检测工具,是专业用于渗透测试的Linux操作系统,由BackTrack发展而来,可以帮助安全和IT专业人士识别安全性问题,验证漏洞的缓解措施,并管理专家驱动的安全性进行评估,提供真…...
《程序员面试金典(第6版)》 面试题 08.11. 硬币(动态规划,组合问题,C++)
题目描述 硬币。给定数量不限的硬币,币值为25分、10分、5分和1分,编写代码计算n分有几种表示法。(结果可能会很大,你需要将结果模上1000000007) 示例1: 输入: n 5 输出:2 解释: 有两种方式可以凑成总金额: 55 511111 示例2: 输…...
实体商家做抖音运营如何做矩阵?
商家实体门店如何做好短视频矩阵?这是一个值得深入探讨的问题。在当今的数字化时代,短视频成为越来越多企业吸引用户、提高曝光度的一种重要方式,实体店也不例外。在本文中,我们将提供一些实用的建议,帮助实体店如何做…...
java 双列集合Map 万字详解
目录 一、前言 二、概述 三、特点 四、常用方法 1. V put(K key, V value) : Δ代码演示 : 2. V get(Object key) : Δ代码演示 : 3. V remove(Object key) : Δ代码演示 : 4. int size() : Δ代码演示 : 5. default V replace(K key, V value) : Δ代码演示 : 6. bo…...
【数据结构】二叉树<遍历>
【二叉树遍历】|-前序-中序-后序-层序-|<二叉树的遍历>1.前序遍历【递归】2.中序遍历【递归】3.后序遍历【递归】4.层序遍历【非递归】4.1判断是否是完全二叉树<二叉树的遍历> 在学习二叉树遍历之前我们先了解下二叉树的概念。 二叉树是: 1.空树 2.非空…...
linux查看硬件信息
dmidecode用于在linux下获取硬件信息,遵循SMBIOS/DMI标准,可获取包括BIOS、系统、主板、处理器、内存、缓存等等硬件信息 1、查看CPU信息cat /proc/cpuinfo、lscpu 型号:cat /proc/cpuinfo|grep name|cut -f2 -d:|uniq -c 物理核:…...
吐血整理,互联网大厂最常见的 1120 道 Java 面试题(带答案)整理
前言 作为一个 Java 程序员,你平时总是陷在业务开发里,每天噼里啪啦忙敲着代码,上到系统开发,下到 Bug 修改,你感觉自己无所不能。然而偶尔的一次聚会,你听说和自己一起出道的同学早已经年薪 50 万&#x…...
RabbitMQ如何避免消息丢失
目录1.生产者没有成功把消息发送到MQ2.RabbitMQ接收到消息之后丢失了消息3.消费者弄丢了消息前言 首先明确一点一条消息的传送流程:生产者->MQ->消费者 我们根据这三个依次讨论 1.生产者没有成功把消息发送到MQ 丢失的原因:因为网络传输的不稳定…...
做算法题的正确姿势(不断更新)
不停的反思自己,总结建议 做一道算法题,不能去死磕。 如果看一道题,半小时内,没有清晰的思路,就看题解!!!你可能觉得你有点思路,就往里死钻,结果可能就像进…...
p85 CTF夺旗-JAVA考点反编译XXE反序列化
数据来源 图片来源 Java 常考点及出题思路 考点技术:xxe,spel 表达式,反序列化,文件安全,最新框架插件漏洞等 设法间接给出源码或相关配置提示文件,间接性源码或直接源码体现等形式 https://www.cnblog…...
FastJson——JSO字符串与对象的相互转化
一、FastJson介绍 Fastjson是阿里巴巴的开源SON解析库它可以解析JSON格式的字符串,支持将java Bean序列化为ISON字符串,也可以从JSON字符串反序列化到JavaBean。 Fastjson的优点 速度快 fastjson相对其他JSON库的特点是快,从2011年fastj…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...
练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...
el-switch文字内置
el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...
RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...
云原生安全实战:API网关Kong的鉴权与限流详解
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关(API Gateway) API网关是微服务架构中的核心组件,负责统一管理所有API的流量入口。它像一座…...
Golang——7、包与接口详解
包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...
Monorepo架构: Nx Cloud 扩展能力与缓存加速
借助 Nx Cloud 实现项目协同与加速构建 1 ) 缓存工作原理分析 在了解了本地缓存和远程缓存之后,我们来探究缓存是如何工作的。以计算文件的哈希串为例,若后续运行任务时文件哈希串未变,系统会直接使用对应的输出和制品文件。 2 …...
Python常用模块:time、os、shutil与flask初探
一、Flask初探 & PyCharm终端配置 目的: 快速搭建小型Web服务器以提供数据。 工具: 第三方Web框架 Flask (需 pip install flask 安装)。 安装 Flask: 建议: 使用 PyCharm 内置的 Terminal (模拟命令行) 进行安装,避免频繁切换。 PyCharm Terminal 配置建议: 打开 Py…...
SpringCloud优势
目录 完善的微服务支持 高可用性和容错性 灵活的配置管理 强大的服务网关 分布式追踪能力 丰富的社区生态 易于与其他技术栈集成 完善的微服务支持 Spring Cloud 提供了一整套工具和组件来支持微服务架构的开发,包括服务注册与发现、负载均衡、断路器、配置管理等功能…...
【中间件】Web服务、消息队列、缓存与微服务治理:Nginx、Kafka、Redis、Nacos 详解
Nginx 是什么:高性能的HTTP和反向代理Web服务器。怎么用:通过配置文件定义代理规则、负载均衡、静态资源服务等。为什么用:提升Web服务性能、高并发处理、负载均衡和反向代理。优缺点:轻量高效,但动态处理能力较弱&am…...
