【C++】二叉搜索树+变身 = AVL树
目录
- 前言
- 一、AVL树
- 二、AVL树的实现
- 2.1 平衡因子
- 2.2 旋转处理
- 2.2.1 左单旋:插入新节点后单纯的右边高
- 2.2.2 右单旋:插入新节点后单纯的左边高
- 2.2.3 左右旋:插入新节点后不是单纯的左边高
- 2.2.4 右左旋:插入新节点后不是单纯的右边高
- 2.3 验证AVL树的平衡
- 三、完整代码
前言
本文仅适合了解二叉搜索树,但不了解AVL树底层原理的同学阅读哦。
本篇文章不会带你从头到尾实现AVL树,但会带你深入理解AVL树是怎么实现平衡的,怎么通过旋转变换实现保持平衡,以及实现平衡过程中的细节应该怎么处理等。
一、AVL树
前面的文章中我们分析过二叉搜索树的性能,得到的结果是理想情况下二叉搜索树的时间复杂度为O(LogN),但在极端情况下(即树蜕化为单边树时),这些操作的时间复杂度会退化为O(n),即使情况不那么极端,效率也不是特别高。
为了防止二叉搜索树出现一边偏高的情况,就需要想办法让二叉搜索树尽量保持平衡,所以两位苏联数学家(或称为俄罗斯数学家)G.M. Adelson-Velsky和E.M. Landis就发明了AVL树,其任何节点的两个子树的高度最大差别为1。
AVL树是具有一下性质的二叉搜索树:
- 其左右子树都是AVL树
- 左右子树高度差不超过1
二、AVL树的实现
本篇文章将沿用之前文章中Key-Value模型的代码,不再从底层开始实现,主要介绍在插入新节点后如何保持二叉搜索树的平衡问题。
2.1 平衡因子
如何保证AVL树的左右子树高度差不超过1?在AVL树的每个节点中存一个平衡因子,本文我们定义平衡因子 = 此节点右子树的高度 - 左子树的高度。
- 插入在左子树,平衡因子 - -
- 插入在右子树,平衡因子++
更新祖先节点的平衡因子时,我们首先需要找到祖先节点,因此每个节点中还需要增加一个指向父节点的指针。
按照我们的需求,其AVL树的节点可以定义为:
template<class K, class V>
struct AVLTreeNode
{pair<K, V> _kv;AVLTreeNode<K, V>* _left;AVLTreeNode<K, V>* _right;AVLTreeNode<K, V>* _parent;int _bf;//平衡因子//构造AVLTreeNode(const pair<K, V>& kv):_kv(kv),_left(nullptr),_right(nullptr),_parent(nullptr),_bf(0){}
};
是否继续往上更新祖先节点的平衡因子,要看parent所在子树的高度是否发生变化。
插入新节点后其父节点的平衡因子有以下几种情况:
- parent的平衡因子 == 0
parent的平衡因子更新前是 -1 / 1,新节点插入在矮的那边,高度不变,不再往上更新 - parent的平衡因子 == 1 / -1
parent的平衡因子更新前是0,parent所在子树高度都变化了,需要往上更新 - parent的平衡因子 == 2 / -2
parent的平衡因子更新前是 -1 / 1,插入新节点后树不再平衡,需要旋转处理
pcur = new Node(kv);
if (parent->_kv.first > kv.first)//判断新节点应该插入左还是右
{parent->_left = pcur;
}
else
{parent->_right = pcur;
}
pcur->_parent = parent;//与父节点链接关系while (parent)//有可能更新到根节点去
{parent->_bf = parent->_left == pcur ? parent->_bf - 1 : parent->_bf + 1;if (parent->_bf == 0)//插入前后高度不变{break;}else if (parent->_bf == 1 || parent->_bf == -1){//高度变了,继续往上更新pcur = parent;parent = parent->_parent;}else if (parent->_bf == 2 || parent->_bf == -2){//插入节点后二叉树不平衡了,需要旋转处理}else{assert(false);//检测AVL树是否异常}
}
2.2 旋转处理
当二叉搜索树出现不平衡的情况时,需要旋转处理,对应插入后二叉搜索树的各种情况,主要有四种旋转的方式来保持平衡。
其中:
- h代表子树的高度,可以是0、1、2…
- 我们用能代表所有情况的四种类型的抽象图来研究旋转方式,单纯研究某几种情况没有意义
原则:
- 保持搜索树的性质
- 降低高度,控制平衡
2.2.1 左单旋:插入新节点后单纯的右边高

旋转处理过程中,我们主要关注三个节点(以上图为例):10(标记为
parent)、30(标记为subR)、b(标记为subLR)。
在旋转过程中,有以下几种情况需要考虑:
subR的左孩子可能存在,也可能不存在parent可能是根节点,也可能是子树。如果是根节点,旋转完成后,要更新根节点;如果是子树,可能是某个节点的左子树,也可能是右子树
//左单旋
void RotateL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;//subRL是有可能为空的parent->_right = subRL;subR->_left = parent;Node* parentparent = parent->_parent;parent->_parent = subR;if (parentparent == nullptr)//subR有可能变成根{_root = subR;}else{if (parentparent->_left == parent){parentparent->_left = subR;}else{parentparent->_right = subR;}}subR->_parent = parentparent;if (subRL){subRL->_parent = parent;}parent->_bf = subR->_bf = 0;//更新平衡因子
}
旋转处理过程中主要是处理各节点的父节点指针的指向和平衡因子的更新。
2.2.2 右单旋:插入新节点后单纯的左边高

其处理方式和左单旋相似,可参考左单旋。
//右单旋
void RotateR(Node* parent)
{Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;subL->_right = parent;Node* parentparent = parent->_parent;parent->_parent = subL;if (parentparent == nullptr){_root = subL;}else{if (parentparent->_left == parent){parentparent->_left = subL;}else{parentparent->_right = subL;}}subL->_parent = parentparent;if (subLR){subLR->_parent = parent;}subL->_bf = parent->_bf = 0;
}
2.2.3 左右旋:插入新节点后不是单纯的左边高

这种情况只用左旋或右旋只会原地打转,不能降低平衡。
我们需要先对subL进行左单旋,再对parent进行右单旋,最后更新平衡因子。
- 双旋后平衡因子的更新要根据插入新节点后
subLR的平衡因子来分情况讨论- 双旋最终结果是把
subLR推到最上面,让其平衡因子为0
//左右旋
void RotateLR(Node* parent)
{Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;RotateL(parent->_left);RotateR(parent);if (bf == 0){parent->_bf = 0;subL->_bf = 0;subLR->_bf = 0;}else if (bf == -1){parent->_bf = 1;subL->_bf = 0;subLR->_bf = 0;}else if (bf == 1){parent->_bf = 0;subL->_bf = -1;subLR->_bf = 0;}else{assert(false);}
}
2.2.4 右左旋:插入新节点后不是单纯的右边高

可参考左右旋。
//右左旋
void RotateRL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;RotateR(parent->_right);RotateL(parent);if (bf == 0){parent->_bf = 0;subR->_bf = 0;subRL->_bf = 0;}else if (bf == -1){parent->_bf = 0;subR->_bf = 1;subRL->_bf = 0;}else if (bf == 1){parent->_bf = -1;subR->_bf = 0;subRL->_bf = 0;}else{assert(false);}
}
旋转完成后,原parent为根的子树个高度降低,已经平衡,不需要再向上更新。
2.3 验证AVL树的平衡
我们可以分别计算出其左子树和右子树的高度,将其相减的值与节点中记录的平衡因子的值比较,看是否符合我们的预期。
int _Height(Node* root)
{if (root == nullptr){return 0;}int leftheight = _Height(root->_left);int rightheight = _Height(root->_right);return leftheight > rightheight ? leftheight + 1 : rightheight + 1;
}bool _isBalanceTree(Node* root)
{if (root == nullptr){return true;}int leftheight = _Height(root->_left);int rightheight = _Height(root->_right);int bf = rightheight - leftheight;if (abs(bf) > 1){cout << root->_kv.first << "高度差异常" << endl;return false;}if (root->_bf != bf){cout << root->_kv.first << "平衡因子异常" << endl;return false;}return _isBalanceTree(root->_left) && _isBalanceTree(root->_right);
}
三、完整代码
template<class K, class V>
struct AVLTreeNode
{pair<K, V> _kv;AVLTreeNode<K, V>* _left;AVLTreeNode<K, V>* _right;AVLTreeNode<K, V>* _parent;int _bf;//平衡因子AVLTreeNode(const pair<K, V>& kv):_kv(kv),_left(nullptr),_right(nullptr),_parent(nullptr),_bf(0){}
};template<class K, class V>
class AVLTree
{typedef AVLTreeNode<K, V> Node;
public:AVLTree() = default;AVLTree(const AVLTree<K, V>& t){_root = copy(t._root);}AVLTree<K, V>& operator=(AVLTree<K, V> t){swap(_root, t._root);return *this;}~AVLTree(){Destroy(_root);_root = nullptr;}bool Find(const K& key){Node* pcur = _root;while (pcur){if (key < pcur->_kv.first){pcur = pcur->_left;}else if (key > pcur->_kv.first){pcur = pcur->_right;}else{return true;}}return false;}bool Insert(const pair<K, V>& kv){//没有节点时需要单独处理if (_root == nullptr){_root = new Node(kv);return true;}Node* pcur = _root;Node* parent = nullptr;while (pcur){if (kv.first < pcur->_kv.first){parent = pcur;pcur = pcur->_left;}else if (kv.first > pcur->_kv.first){parent = pcur;pcur = pcur->_right;}else{return false;}}pcur = new Node(kv);if (parent->_kv.first > kv.first)//判断新节点应该插入左还是右{parent->_left = pcur;}else{parent->_right = pcur;}pcur->_parent = parent;//与父节点链接关系//更新平衡因子while (parent)//有可能更新到根节点去{parent->_bf = parent->_left == pcur ? parent->_bf - 1 : parent->_bf + 1;if (parent->_bf == 0)//插入前后高度不变{break;}else if (parent->_bf == 1 || parent->_bf == -1){//高度变了,继续往上更新pcur = parent;parent = parent->_parent;}else if (parent->_bf == 2 || parent->_bf == -2){//插入节点后二叉树不平衡了,需要旋转处理if (parent->_bf == 2 && pcur->_bf == 1){RotateL(parent);}else if (parent->_bf == -2 && pcur->_bf == -1){RotateR(parent);}else if (parent->_bf == 2 && pcur->_bf == -1){RotateRL(parent);}else if (parent->_bf == -2 && pcur->_bf == 1){RotateLR(parent);}break;//不管是哪种情况,旋转完后子树的高度没有变化,所以不再调整}else{assert(false);//检测AVL树是否异常}}return true;}void InOrder(){_InOrder(_root);cout << endl;}bool IsBalanceTree(){return _isBalanceTree(_root);}private://左单旋void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;//subRL是有可能为空的parent->_right = subRL;subR->_left = parent;Node* parentparent = parent->_parent;parent->_parent = subR;if (parentparent == nullptr)//subR有可能变成根{_root = subR;}else{if (parentparent->_left == parent){parentparent->_left = subR;}else{parentparent->_right = subR;}}subR->_parent = parentparent;if (subRL){subRL->_parent = parent;}parent->_bf = subR->_bf = 0;//更新平衡因子}//右单旋void RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;subL->_right = parent;Node* parentparent = parent->_parent;parent->_parent = subL;if (parentparent == nullptr){_root = subL;}else{if (parentparent->_left == parent){parentparent->_left = subL;}else{parentparent->_right = subL;}}subL->_parent = parentparent;if (subLR){subLR->_parent = parent;}subL->_bf = parent->_bf = 0;}//左右旋void RotateLR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;RotateL(parent->_left);RotateR(parent);if (bf == 0){parent->_bf = 0;subL->_bf = 0;subLR->_bf = 0;}else if (bf == -1){parent->_bf = 1;subL->_bf = 0;subLR->_bf = 0;}else if (bf == 1){parent->_bf = 0;subL->_bf = -1;subLR->_bf = 0;}else{assert(false);}}//右左旋void RotateRL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;RotateR(parent->_right);RotateL(parent);if (bf == 0){parent->_bf = 0;subR->_bf = 0;subRL->_bf = 0;}else if (bf == -1){parent->_bf = 0;subR->_bf = 1;subRL->_bf = 0;}else if (bf == 1){parent->_bf = -1;subR->_bf = 0;subRL->_bf = 0;}else{assert(false);}}Node* copy(Node* root){if (root == nullptr){return nullptr;}Node* copynode = new Node(root->_kv);copynode->_left = copy(root->_left);copynode->_right = copy(root->_right);return copynode;}void Destroy(Node* root){if (root == nullptr)return;Destroy(root->_left);Destroy(root->_right);delete root;}void _InOrder(Node* root){if (root == nullptr)//递归一定要有结束条件{return;}_InOrder(root->_left);cout << root->_kv.first << ":" << root->_kv.second << endl;_InOrder(root->_right);}int _Height(Node* root){if (root == nullptr){return 0;}int leftheight = _Height(root->_left);int rightheight = _Height(root->_right);return leftheight > rightheight ? leftheight + 1 : rightheight + 1;}bool _isBalanceTree(Node* root){if (root == nullptr){return true;}int leftheight = _Height(root->_left);int rightheight = _Height(root->_right);int bf = rightheight - leftheight;if (abs(bf) > 1){cout << root->_kv.first << "高度差异常" << endl;return false;}if (root->_bf != bf){cout << root->_kv.first << "平衡因子异常" << endl;return false;}return _isBalanceTree(root->_left) && _isBalanceTree(root->_right);}private:Node* _root = nullptr;
};
本篇文章的分享就到这里了,如果您觉得在本文有所收获,还请留下您的三连支持哦~
相关文章:
【C++】二叉搜索树+变身 = AVL树
🚀个人主页:小羊 🚀所属专栏:C 很荣幸您能阅读我的文章,诚请评论指点,欢迎欢迎 ~ 目录 前言一、AVL树二、AVL树的实现2.1 平衡因子2.2 旋转处理2.2.1 左单旋:插入新节点后单纯的右边高2.2.2 …...
Flutter String 按 ,。分割
在 Flutter 中,如果你想将一个字符串按特定的字符(例如中文逗号 , 和英文句号 .)进行分割,可以使用 Dart 语言的字符串处理功能。具体来说,你可以使用 split 方法,并传入一个正则表达式来匹配这…...
Redis: 集群高可用之MOVED转向和ASK转向解决方案
MOVED转向 1 ) 问题描述 在客户端操作Redis集群的时候 MOVED转向 或 MOVED错误是经常遇到的一类问题我们先连入集群:$ /usr/local/redis/bin/redis-cli -a 123456 -h 192.168.10.101 -p 6371之前在Redis中存储过一些数据,比如下面的情况,当输…...
idea插件市场安装没反应
https://plugins.jetbrains.com/idea重启后还是不行那就...
数据结构之排序(5)
摘要:本文主要讲各种排序算法,注意它们的时间复杂度 概念 将各元素按关键字递增或递减排序顺序重新排列 评价指标 稳定性: 关键字相同的元素经过排序后相对顺序是否会改变 时间复杂度、空间复杂度 分类 内部排序——数据都在内存中 外部排序——…...
R包的安装、加载以及如何查看帮助文档
0x01 如何安装R包 一、通过R 内置函数安装(常用) 1.安装CRAN的R包 install.packages()是一个用于安装 R 包的重要函数。 语法:install.packages(pkgs, repos getOption("repos"),...) 其中: pkgs:要安…...
【YOLO学习】YOLOv3详解
文章目录 1. 网络结构1.1 结构介绍1.2 改进 2. 训练与测试过程3. 总结 1. 网络结构 1.1 结构介绍 1. 与 YOLOv2 不同的是,YOLOv3 在 Darknet-19 里加入了 ResNet 残差连接,改进之后的模型叫 Darknet-53。在 ImageNet上 实验发现 Darknet-53 相对于 ResN…...
JDK1.0主要特性
JDK 1.0,也被称为Java 1,是Java编程语言的第一个正式版本,由Sun Microsystems公司在1996年发布。JDK 1.0的发布标志着Java作为一种编程语言和平台的正式诞生,它带来了许多创新的概念和特性,对后来的软件开发产生了深远…...
CSS基础-盒子模型(三)
9、CSS盒子模型 9.1 CSS常用长度单位 1、px:像素; 2、em:相对元素font-size的倍数; 3、rem:相对根字体的大小,html标签即是根; 4、%:相对于父元素进行计算。 注意:CSS样…...
深度学习中的损失函数详解
深度学习中的损失函数详解 文章目录 深度学习中的损失函数详解损失函数的基础概念常见的损失函数类型及应用场景回归问题的损失函数分类问题的损失函数自定义损失函数 如何选择合适的损失函数?损失函数在深度学习中的应用 在深度学习的世界中,损失函数&a…...
系统架构设计师-下午案例题(2022年下半年)
1.试题-(共25分):阅读以下关于软件架构设计与评估的叙述在答题纸上回答问题1和问题2。 【说明】某电子商务公司拟升级其会员与促销管理系统,向用户提供个性化服务,提高用户的粘性。在项目立项之初,公司领导层一致认为本次升级的主要目标是提…...
高级图片编辑器Photopea
什么是 Photopea ? Photopea 是一款免费的在线工具,用于编辑光栅和矢量图形,支持PSD、AI 和 Sketch文件。 功能上,Photopea 和 老苏之前介绍的 miniPaint 比较像 文章传送门:在线图片编辑器miniPaint 支持的格式 复杂…...
详解zookeeper四字命令
ZooKeeper 的四字命令(Four-Letter Words, 4LW)是一组简单的管理和监控命令,方便运维人员快速获取 ZooKeeper 集群和节点的运行状态。这些命令通常用于健康检查、性能监控、节点配置查看等操作。通过这些命令,可以轻松获取关于 Zo…...
docker 进入容器运行命令
要进入正在运行的Docker容器并在其中执行命令,你可以使用docker exec命令。以下是具体步骤和示例: 1. 查看正在运行的容器 首先,确认你的容器正在运行,可以使用以下命令查看所有运行中的容器: docker ps2. 进入容器…...
一行 Python 代码能实现什么丧心病狂的功能?圣诞树源代码
手头有 109 张头部 CT 的断层扫描图片,我打算用这些图片尝试头部的三维重建。基础工作之一,就是要把这些图片数据读出来,组织成一个三维的数据结构(实际上是四维的,因为每个像素有 RGBA 四个通道)。 这个…...
mit6824-01-MapReduce详解
文章目录 MapReduce简述编程模型执行流程执行流程排序保证Combiner函数Master数据结构 容错性Worker故障Master故障 性能提升定制分区函数局部性执行缓慢的worker(slow workers) 常见问题总结回顾参考链接 MapReduce简述 MapReduce是一个在多台机器上并行计算大规模数据的软件架…...
在Docker中运行微服务注册中心Eureka
1、Docker简介: 作为开发者,经常遇到一个头大的问题:“在我机器上能运行”。而将SpringCloud微服务运行在Docker容器中,避免了因环境差异带来的兼容性问题,能够有效的解决此类问题。 通过Docker,开发者可…...
白话进程>线程>协程
文章目录 概述进程线程协程区别与联系 举个栗子进程例子线程例子协程例子区别与联系的具体体现 代码示例进程例子线程例子协程(Goroutine)例子 概述 进程、线程和协程是计算机科学中的基本概念,它们在操作系统和并发编程中扮演着重要角色。以…...
论文阅读:Attention is All you Need
Abstract 贡献: 提出了Transformer,完全基于注意力机制,摒弃了循环和卷积网络。 结果: 本模型在质量上优于现有模型,同时具有更高的并行性,并且显著减少了训练时间。 1. Introduction long short-term …...
【Linux 】文件描述符fd、重定向、缓冲区(超详解)
目录 编辑 系统接口进行文件访问 open 接口介绍 文件描述符fd 重定向 缓冲区 1、缓冲区是什么? 2、为什么要有缓冲区? 3、怎么办? 我们先来复习一下,c语言对文件的操作: C默认会打开三个输入输出流…...
springboot 百货中心供应链管理系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...
vscode(仍待补充)
写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...
vue3 定时器-定义全局方法 vue+ts
1.创建ts文件 路径:src/utils/timer.ts 完整代码: import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...
css3笔记 (1) 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...
【开发技术】.Net使用FFmpeg视频特定帧上绘制内容
目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...
蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...
零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)
本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...
基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解
JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用,结合SQLite数据库实现联系人管理功能,并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能,同时可以最小化到系统…...
