当前位置: 首页 > news >正文

Python数据分析篇--NumPy--进阶

人有一种天生的、难以遏制的欲望,那就是在理解之前就评判。    -- 米兰·昆德拉

多维数组 

1. 一维数组只有行,二维数组相比一维数组多了列这个维度,而三维数组则类似多个二维数组堆叠在一起,形如一个立方体。

二维数组的创建

1. 二维数组相当于单层的嵌套列表。并且我们可以将单层嵌套列表传入 np.array() 方法创建一个二维数组。

2. ones() 和 zeros() 方法同样也能快速创建元素全为 1 和 0 的二维数组。与之前的区别在于,创建二维数组要传入一个包含行和列信息的元组。

3. 更多维的数组的创建,只要传入嵌套层数更多的列表即可。

import numpy as nplist_1=[[1, 2], [3, 4]]
print(list_1)
# [[1, 2], [3, 4]]list_2=np.array([[1, 2], [3, 4]])
print(list_2)
# [[1 2]
#  [3 4]]
import numpy as np
list_1=np.ones((3,4)) # 3行4列
print(list_1)#[[1. 1. 1. 1.]
# [1. 1. 1. 1.]
# [1. 1. 1. 1.]]

多维数组的性质

1. ndim:多维数组的维度个数。例如:二维数组的 ndim 为 2;

2. shape:多维数组的形状。对于 m 行和 n 列的数组,它的 shape 将是 (m,n)。因此,shape 元组的长度(元素个数)就是 ndim 的值;

3. size:多维数组中所有元素的个数。shape 元组中每个元素的乘积就是 size 的值;

4. dtype:多维数组中元素的类型。    

data = np.array([[1, 2, 3], [4, 5, 6]])print('ndim:', data.ndim)
print('shape:', data.shape)
print('size:', data.size)
print('dtype:', data.dtype)# ndim: 2
# shape: (2, 3)
# size: 6
# dtype: int64

 二维数组的加减乘除

1. 二维数组间的加减乘除和一维数组间的并无大致,也是对应位置的元素进行计算。 

2. 维度一样的数组间可以进行计算的条件是形状(shape)一样,形状不一样的数组元素无法一一对应,因此无法计算,导致报错。

3. 广播原则:先补齐行轴,再往列轴方向进行复制。

二维数组的通用方法 

1. 二维数组的通用方法和一维数组的通用方法的基本用法类似,只是多了一个维度的数据。

2. 二维数组不仅可以对所有数据进行计算,还可以针对某个维度上的数据进行计算。

3. 这里就要引入一个概念——轴(axis)。轴和维度的概念是类似的,一维数组有 1 个轴,二维数组有 2 个轴,三维数组有 3 个轴等等。

import numpy as np
data = np.array([[1, 2], [5, 3], [4, 6]])# 不指定 axis
print(data.max())
# 输出:6# axis=0
print(data.max(axis=0))
# 输出:[5 6]# axis=1
print(data.max(axis=1))
# 输出:[2 5 6]

 二维数组的索引和分片

1. 二维数组的索引和分片同样和一维数组类似,只是在行索引的基础上再加上列索引。

2. 形如 data[m,n],其中 data 是二维数组,m 是行索引或分片,n 是列索引或分片。 

3. 如果省略第二个参数 n 的话表示获取所有列,data[0] 就表示获取整个第一行,相当于 data[0, :]。

data = np.array([[1, 2], [3, 4], [5, 6]])print(data[0, 1])
# 2print(data[:, 0])
# [1 3 5]print(data[1:3])
# [[3 4]
#  [5 6]]

 布尔索引

1. 布尔索引,顾名思义就是用布尔值作为索引去获取需要的元素。 

2. and 改用 &,or 改用 |,not 改用 ~,并且每个条件要用括号括起来。

data = np.array([[1, 2], [3, 4], [5, 6]])
print(data[data > 3])
# 输出:[4 5 6]# 大于 3 或者不小于 2(即大于等于 2)
print(data[(data > 3) | ~(data < 2)])
# 输出:[2 3 4 5 6]

 实用方法

arange() 方法

1. numpy 中的 arange() 方法和 Python 中的 rang() 用法类似,不同之处在于 arange() 方法生成的是数组,而 rang() 方法生成的是 rang 类型的序列。

# 生成 1-9 的数组
print(np.arange(1, 10))
# 输出:[1 2 3 4 5 6 7 8 9]# 生成 0-9 的数组
print(np.arange(10))
# 输出:[0 1 2 3 4 5 6 7 8 9]# 生成 1-9 的数组,步长为 2
print(np.arange(1, 10, 2))
# 输出:[1 3 5 7 9]

 随机方法

1. Python 中有 random 模块来生成随机数,numpy 针对多维数组也集成了 random 模块,并且更加方便好用。

2. 这里只介绍其中的 rand() 方法和 randint() 方法,更多方法大家可以在需要时查询使用。 

3. numpy 中的 np.random.rand() 方法和 Python 中 random.rand() 方法类似,都是生成 [0,1) 之间的随机小数。

4. 不同的是,numpy 中的  np.random.rand() 方法可以生成多个 [0,1) 之间的随机小数,只需我们传入要生成的随机数组的形状(shape)即可。

5. 同理,numpy 中的 np.random.randint() 方法和 Python 中的 random.randint() 类似.

6. 不同之处在于,random.randint() 生成的是 [m,n] 之间的整数,而 np.random.randint() 生成的是 [m,n) 之间的整数。

# 不传参数时
print(np.random.rand())
# 输出:0.1392571183916036# 传入一个参数时
print(np.random.rand(3))
# 输出:[0.7987698  0.52115291 0.70452156]# 传入多个参数时
print(np.random.rand(2, 3))
# 输出:
# [[0.08539006 0.97878203 0.23976172]
#  [0.34301963 0.48388704 0.63304024]]
# 不传入形状时
print(np.random.randint(0, 5))
# 输出:3# 形状为一维数组时
print(np.random.randint(0, 5, 3))
# 输出:[4 0 1]# 形状为二维数组时
print(np.random.randint(0, 5, (2, 3)))
# 输出:
# [[0 2 1]
#  [4 2 0]]

genfromtxt() 方法

1. genfromtxt() 方法用于文件的读取。

2. genfromtxt() 方法常用的参数有两个,分别是数据源和分隔符。

3. 第一个参数是数据源,可以是本地文件的路径,也可以是网络文件的地址。

4. 第二个delimiter 参数用于指定分隔符,CSV 文件一般是用逗号作为分隔符,当遇到其他符号分隔的文件时,用 delimiter 参数进行指定即可。

5. genfromtxt() 方法的返回值是一个多维数组。

import numpy as np
data=np.genfromtxt('data.csv',delimiter=',')
print(data)

致谢

  感谢您花时间阅读这篇文章!如果您对本文有任何疑问、建议或是想要分享您的看法,请不要犹豫,在评论区留下您的宝贵意见。每一次互动都是我前进的动力,您的支持是我最大的鼓励。期待与您的交流,让我们共同成长,探索技术世界的无限可能!

相关文章:

Python数据分析篇--NumPy--进阶

人有一种天生的、难以遏制的欲望&#xff0c;那就是在理解之前就评判。 -- 米兰昆德拉 多维数组 1. 一维数组只有行&#xff0c;二维数组相比一维数组多了列这个维度&#xff0c;而三维数组则类似多个二维数组堆叠在一起&#xff0c;形如一个立方体。 二维数组的创建 1. 二…...

基于Arduino的宠物食物分配器

创作本文的初衷是本人的一个养宠物的梦想&#xff08;因为家里人对宠物过敏&#xff0c;因此养宠物的action一直没有落实&#xff09;&#xff0c;但是梦想总是要有的哈哈哈哈哈。上周正好是和一个很好的朋友见面&#xff0c;聊到了养宠物的事情&#xff0c;她大概是讲到了喂宠…...

make和Makefile

make是一个命令工具&#xff0c;用于读取并执行名为Makefile&#xff08;makefile&#xff09;的文件中定义的规则。 Makefile是一个文本文件&#xff0c;它告诉make哪些文件依赖于其他文件&#xff0c;以及如何从这些依赖项生成最终的目标文件。 我们先简单看一下使用make的…...

【数学分析笔记】第4章第4节 复合函数求导法则及其应用(2)

4. 微分 4.4 复合函数求导法则及其应用 【例4.4.3】 y e 1 cos ⁡ x ye^{\sqrt{1\cos x}} ye1cosx ​&#xff0c;求 y ′ y y′ 【解】 y ′ e 1 cos ⁡ x ⋅ 1 2 1 cos ⁡ x ⋅ ( − sin ⁡ x ) − sin ⁡ x 2 1 cos ⁡ x e 1 cos ⁡ x ye^{\sqrt{1\cos x}}\cdot\f…...

【预备理论知识——2】深度学习:线性代数概述

简单地说&#xff0c;机器学习就是做出预测。 线性代数 线性代数是数学的一个分支&#xff0c;主要研究向量空间、线性方程组、矩阵理论、线性变换、特征值和特征向量、内积空间等概念。它是现代数学的基础之一&#xff0c;并且在物理学、工程学、计算机科学、经济学等领域有着…...

【目标检测】yolo的三种数据集格式

目标检测中数据集格式之间的相互转换--coco、voc、yolohttps://zhuanlan.zhihu.com/p/461488682?utm_mediumsocial&utm_psn1825483604463071232&utm_sourcewechat_session【目标检测】yolo的三种数据集格式https://zhuanlan.zhihu.com/p/525950939?utm_mediumsocial&…...

数据分析案例-机器学习工程师薪资数据可视化分析

&#x1f935;‍♂️ 个人主页&#xff1a;艾派森的个人主页 ✍&#x1f3fb;作者简介&#xff1a;Python学习者 &#x1f40b; 希望大家多多支持&#xff0c;我们一起进步&#xff01;&#x1f604; 如果文章对你有帮助的话&#xff0c; 欢迎评论 &#x1f4ac;点赞&#x1f4…...

Django连接Dify、ChatGPT4o并计算tokens数量方法

通过Dify可以连接很多模型国内、国外的都可以进行选择可以到Dify里创建一个空白应用&#xff0c;然后点击进入就可以看到API了api_url "http://192.168.15.131/v1/chat-messages" api_key "app-UtzTpVNwpTLUcGvRNnnK9QNY" headers {"Authorization…...

面试系列-淘天提前批面试

00-淘天提前批面试 在牛客上看到了淘天提前批的面试题目&#xff0c;这里分析一下淘天面试的问了有哪些内容&#xff0c;面试的重点 是偏向哪些方面 项目相关 1、秒杀架构如何设计&#xff1f; 问了秒杀的架构如何设计&#xff0c;对于秒杀的设计&#xff0c;秒杀符合 写多读少…...

计算机中科学中有哪些空间换时间的操作??

计算机中科学中有哪些空间换时间的操作&#xff1f;&#xff1f; 1. SPOOLing (Simultaneous Peripheral Operations On-Line) 原理&#xff1a;SPOOLing 是一种将输入/输出操作缓存到磁盘或内存中的技术&#xff0c;从而在后台处理它们。这可以防止 CPU 等待慢速的外部设备&…...

Mac安装Manim并运行

1.在macOS上创建Python虚拟环境&#xff0c;可以使用venv模块&#xff0c;这是Python自带的库&#xff0c;也可以使用conda。以下是使用venv创建和使用Python虚拟环境的步骤&#xff1a; 打开终端。 创建一个新的目录来存放你的项目&#xff0c;并进入该目录&#xff1a; mk…...

leetcode58:最后一个单词的长度

给你一个字符串 s&#xff0c;由若干单词组成&#xff0c;单词前后用一些空格字符隔开。返回字符串中 最后一个 单词的长度。 单词 是指仅由字母组成、不包含任何空格字符的最大 子字符串 。 示例 1&#xff1a; 输入&#xff1a;s "Hello World" 输出&#xff…...

18448 最小生成树

### 思路 使用Kruskal算法求解图的最小生成树。Kruskal算法通过对所有边按权值排序&#xff0c;然后逐步选择最小权值的边&#xff0c;确保不会形成环&#xff0c;直到构建出最小生成树。 ### 伪代码 1. 读取输入的结点数n和边数m。 2. 读取每条边的信息&#xff0c;存储在边列…...

前端工程化 - Vue

环境准备 Vue-cli是Vue官方提供的一个脚手架&#xff0c;用户快速生成一个Vue的项目模板。 Vue-cli提供了如下功能&#xff1a; 统一的目录结构本地调试热部署单元测试集成打包上线 需要安装Node.js 安装Vue-cli npm install -g vue/cli通过vue --version指令查看是否安装成…...

使用 NVIDIA H100 上的 Azure 机密计算释放隐私保护 AI 的潜力

通过 NVIDIA H100 上的 Azure 机密计算释放隐私保护 AI 的潜力 文章目录 前言一、机密计算二、使用 NVIDIA H100 Tensor Core GPU 的 Azure 机密计算1. 安全功能2. 可扩展性和可编程性三、场景1. 模型机密性2. 推理/提示机密性3. 使用私有数据进行微调4. 多方培训结论前言 这是…...

目标检测与图像分类:有什么区别?各自的使用场景是什么?

《博主简介》 小伙伴们好&#xff0c;我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源&#xff0c;可关注公-仲-hao:【阿旭算法与机器学习】&#xff0c;共同学习交流~ &#x1f44d;感谢小伙伴们点赞、关注&#xff01; 《------往期经典推…...

Lua 数据类型

Lua 数据类型 Lua 是一种轻量级的编程语言&#xff0c;因其简单性和灵活性而广受欢迎。在 Lua 中&#xff0c;数据类型是编程的基础&#xff0c;它们决定了变量能够存储哪种类型的数据。Lua 的数据类型可以分为以下几个类别&#xff1a; 1. nil nil 是 Lua 中的一个特殊类型…...

复现文章:R语言复现文章画图

文章目录 介绍数据和代码图1图2图6附图2附图3附图4附图5附图6 介绍 文章提供画图代码和数据&#xff0c;本文记录 数据和代码 数据可从以下链接下载&#xff08;画图所需要的所有数据&#xff09;&#xff1a; 百度云盘链接: https://pan.baidu.com/s/1peU1f8_TG2kUKXftkpYq…...

东方仙盟——软件终端架构思维———未来之窗行业应用跨平台架构

一、创生.前世今生 在当今的数字化时代&#xff0c;我们的服务覆盖全球&#xff0c;拥有数亿客户。然而&#xff0c;这庞大的用户规模也带来了巨大的挑战。安全问题至关重要&#xff0c;任何一处的漏洞都可能引发严重的数据泄露危机。网络带宽时刻面临考验&#xff0c;稍有不足…...

支持向量机(SVM)基础教程

一、引言 支持向量机&#xff08;Support Vector Machine&#xff0c;简称SVM&#xff09;是一种高效的监督学习算法&#xff0c;广泛应用 于分类和回归分析。SVM以其强大的泛化能力、简洁的数学形式和优秀的分类效果而备受机器学 习领域的青睐。 二、SVM基本原理 2.1 最大间…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)

说明&#xff1a; 想象一下&#xff0c;你正在用eNSP搭建一个虚拟的网络世界&#xff0c;里面有虚拟的路由器、交换机、电脑&#xff08;PC&#xff09;等等。这些设备都在你的电脑里面“运行”&#xff0c;它们之间可以互相通信&#xff0c;就像一个封闭的小王国。 但是&#…...

Android Wi-Fi 连接失败日志分析

1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分&#xff1a; 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析&#xff1a; CTR…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学&#xff08;Elliptic Curve Cryptography&#xff09;是基于椭圆曲线数学理论的公钥密码系统&#xff0c;由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA&#xff0c;ECC在相同安全强度下密钥更短&#xff08;256位ECC ≈ 3072位RSA…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

376. Wiggle Subsequence

376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例&#xff0c;也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下&#xff1a; 定义实例工厂类&#xff08;Java代码&#xff09;&#xff0c;定义实例工厂&#xff08;xml&#xff09;&#xff0c;定义调用实例工厂&#xff…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...