当前位置: 首页 > news >正文

红外变电站分割数据集,标注为json格式,总共有5类,避雷器(289张),绝缘子(919张),电流互感器(413张),套管(161张),电压互感器(153张)

 

红外变电站分割数据集,标注为json格式,总共有5类

避雷器(289张),绝缘子(919张),电流互感器(413张),套管(161张),电压互感器(153张)

 

红外变电站分割数据集 (Infrared Substation Segmentation Dataset)

数据集概述

该数据集是一个专门用于训练和评估红外图像中变电站设备分割模型的数据集。数据集包含约1935张红外图像,每张图像都带有详细的标注信息,标注格式为JSON格式。这些图像涵盖了五种不同类型的变电站设备:避雷器、绝缘子、电流互感器、套管和电压互感器。适用于基于深度学习的语义分割任务,通过这个数据集,可以训练出能够在红外图像中准确分割和识别不同类型变电站设备的模型,从而帮助进行电力设施维护、故障检测等应用。

数据集特点
  • 高质量红外图像:数据集中的图像均为红外成像,具有高分辨率,能够提供丰富的温度分布信息,特别适合变电站设备的特征分析。
  • 带标注:每张图像都有详细的标注信息,包括设备的位置和边界。
  • JSON格式标注:标注信息以JSON格式提供,方便直接使用于支持JSON格式的语义分割框架。
  • 实际应用场景:适用于需要精确分割和识别红外图像中变电站设备的场景,如电力设施维护、故障检测系统等。
数据集结构
infrared_substation_segmentation_dataset/
├── images/                            # 图像文件
│   ├── 00001.jpg                      # 示例图像
│   ├── 00002.jpg
│   └── ...
├── annotations/                       # JSON格式标注文件
│   ├── 00001.json                     # 示例JSON标注文件
│   ├── 00002.json
│   └── ...
├── data.yaml                          # 类别描述文件
├── README.md                          # 数据集说明
└── model/                             # 预训练模型文件夹(可选)└── infrared_substation_segmentation_model.pth  # 预训练模型(如果有的话)
数据集内容
  1. images/

    • 功能:存放图像文件。
    • 内容
      • 00001.jpg:示例图像。
      • 00002.jpg:另一张图像。
      • ...
  2. annotations/

    • 功能:存放JSON格式的标注文件。
    • 内容
      • 00001.json:示例JSON标注文件。
      • 00002.json:另一张图像的JSON标注文件。
      • ...
  3. data.yaml

    • 功能:定义数据集的类别和其他相关信息。
    • 内容
       yaml 

      深色版本

      train: infrared_substation_segmentation_dataset/images
      val: infrared_substation_segmentation_dataset/images
      nc: 5
      names: ['arrester', 'insulator', 'current transformer', 'bushing', 'voltage transformer']
  4. README.md

    • 功能:数据集的详细说明文档。
    • 内容
      • 数据集的来源和用途。
      • 数据集的结构和内容。
      • 如何使用数据集进行模型训练和评估。
      • 其他注意事项和建议。
  5. model/(可选)

    • 功能:存放预训练模型文件。
    • 内容
      • infrared_substation_segmentation_model.pth:预训练的模型文件(如果有的话)。
数据集统计

  • 总图像数量:约1935张
  • 类别:5类
  • 类别列表及图像数量
    • arrester(避雷器):289张
    • insulator(绝缘子):919张
    • current transformer(电流互感器):413张
    • bushing(套管):161张
    • voltage transformer(电压互感器):153张
使用说明
  • 环境准备:确保安装了常用的深度学习库,例如torchtorchvisionnumpy等。
  • 数据集路径设置:将数据集解压到项目目录下,并确保路径正确。
  • 加载预训练模型:如果有预训练模型,可以直接加载并对其进行微调或直接使用。
  • 数据增强:可以通过随机翻转、旋转等方法增加数据多样性,提高模型鲁棒性。
  • 超参数调整:根据实际情况调整学习率、批大小等超参数,以获得最佳训练效果。
  • 硬件要求:建议使用GPU进行训练和推理,以加快处理速度。如果没有足够的计算资源,可以考虑使用云服务提供商的GPU实例。
  • 类别平衡:虽然数据集中各类别的样本数量相对均衡,但在实际应用中可能需要进一步检查并处理类别不平衡问题,例如通过过采样或欠采样方法。

关键代码示例

以下是一个使用PyTorch和torchvision库进行红外变电站设备分割的示例代码。我们将使用预训练的DeepLab v3+模型,并对其进行微调以适应我们的数据集。

import torch
import torchvision
from torchvision.models.segmentation import deeplabv3_resnet101
from torchvision.transforms import functional as F
from torch.utils.data import DataLoader, Dataset
from PIL import Image
import os
import json
import numpy as np# 自定义数据集类
class InfraredSubstationSegmentationDataset(Dataset):def __init__(self, root, transforms=None):self.root = rootself.transforms = transformsself.imgs = list(sorted(os.listdir(os.path.join(root, "images"))))self.annotations = list(sorted(os.listdir(os.path.join(root, "annotations"))))def __getitem__(self, idx):img_path = os.path.join(self.root, "images", self.imgs[idx])annotation_path = os.path.join(self.root, "annotations", self.annotations[idx])img = Image.open(img_path).convert("RGB")with open(annotation_path, 'r') as f:annotation = json.load(f)mask = np.zeros((img.height, img.width), dtype=np.uint8)for obj in annotation['objects']:class_id = {'arrester': 1,'insulator': 2,'current transformer': 3,'bushing': 4,'voltage transformer': 5}[obj['class']]polygon = np.array(obj['polygon'])cv2.fillPoly(mask, [polygon], class_id)mask = Image.fromarray(mask)if self.transforms is not None:img, mask = self.transforms(img, mask)return F.to_tensor(img), F.to_tensor(mask)def __len__(self):return len(self.imgs)# 数据预处理
def get_transform(train):transforms = []if train:transforms.append(torchvision.transforms.RandomHorizontalFlip(0.5))return torchvision.transforms.Compose(transforms)# 加载数据集
dataset = InfraredSubstationSegmentationDataset(root='infrared_substation_segmentation_dataset', transforms=get_transform(train=True))
dataset_test = InfraredSubstationSegmentationDataset(root='infrared_substation_segmentation_dataset', transforms=get_transform(train=False))indices = torch.randperm(len(dataset)).tolist()
dataset = torch.utils.data.Subset(dataset, indices[:-193])
dataset_test = torch.utils.data.Subset(dataset_test, indices[-193:])data_loader = DataLoader(dataset, batch_size=2, shuffle=True, num_workers=4, collate_fn=lambda x: tuple(zip(*x)))
data_loader_test = DataLoader(dataset_test, batch_size=1, shuffle=False, num_workers=4, collate_fn=lambda x: tuple(zip(*x)))# 定义模型
model = deeplabv3_resnet101(pretrained=True)
model.classifier[-1] = torch.nn.Conv2d(256, 6, kernel_size=(1, 1), stride=(1, 1))  # 5类 + 背景
model.aux_classifier[-1] = torch.nn.Conv2d(256, 6, kernel_size=(1, 1), stride=(1, 1))  # 5类 + 背景# 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)# 定义优化器
params_to_optimize = [{"params": [p for p in model.backbone.parameters() if p.requires_grad]},{"params": [p for p in model.classifier.parameters() if p.requires_grad]},
]
optimizer = torch.optim.SGD(params_to_optimize, lr=0.005, momentum=0.9, weight_decay=0.0005)# 训练模型
num_epochs = 10
for epoch in range(num_epochs):model.train()for images, targets in data_loader:images = list(image.to(device) for image in images)targets = list(target.to(device) for target in targets)optimizer.zero_grad()outputs = model(images)loss = torch.nn.functional.cross_entropy(outputs['out'], targets)if 'aux' in outputs:loss += 0.5 * torch.nn.functional.cross_entropy(outputs['aux'], targets)loss.backward()optimizer.step()print(f'Epoch {epoch+1}/{num_epochs}, Loss: {loss.item()}')# 验证模型model.eval()with torch.no_grad():for images, targets in data_loader_test:images = list(image.to(device) for image in images)targets = list(target.to(device) for target in targets)outputs = model(images)# 保存模型
torch.save(model.state_dict(), 'infrared_substation_segmentation_model.pth')

注意事项

  • 数据格式:确保输入的数据格式正确,特别是图像文件和标注文件的格式。
  • 超参数调整:根据实际情况调整学习率、批大小等超参数,以获得最佳训练效果。
  • 硬件要求:建议使用GPU进行训练和推理,以加快处理速度。如果没有足够的计算资源,可以考虑使用云服务提供商的GPU实例。
  • 数据增强:可以通过数据增强技术(如随机翻转、旋转等)来增加模型的鲁棒性。
  • 模型选择:除了DeepLab v3+,还可以尝试其他语义分割模型,如U-Net、FCN等,以找到最适合当前任务的模型。
  • 类别平衡:虽然数据集中各类别的样本数量相对均衡,但在实际应用中可能需要进一步检查并处理类别不平衡问题,例如通过过采样或欠采样方法。

通过上述步骤,你可以成功地使用这个高质量的红外变电站分割数据集进行模型训练和评估。该数据集不仅适用于学术研究,还可以应用于实际的电力设施维护、故障检测系统等领域,帮助提升对红外图像中变电站设备的分割准确性和效率。希望这个数据集能帮助你更好地理解和应用最新的深度学习技术。

相关文章:

红外变电站分割数据集,标注为json格式,总共有5类,避雷器(289张),绝缘子(919张),电流互感器(413张),套管(161张),电压互感器(153张)

红外变电站分割数据集,标注为json格式,总共有5类 避雷器(289张),绝缘子(919张),电流互感器(413张),套管(161张)&#xff0…...

HBase 性能优化 详解

HBase 是基于 Hadoop HDFS 之上的分布式 NoSQL 数据库,具有高伸缩性和强大的读写能力。然而,由于其分布式架构和复杂的数据存储模式,在高并发、大规模数据场景下,HBase 性能优化至关重要。从底层原理和源代码层面理解 HBase 的特性…...

杭电2041-2050

2041 这里进入递归专题了 #include<bits/stdc.h> #include<iostream> //简单递归 using namespace std; long long int M[45]; int main() {int n;M[1]1;M[2]1;for(int i3;i<45;i){M[i]M[i-1]M[i-2];}while(cin>>n){while(n--){int m;cin>>m;cout…...

Ambari搭建Hadoop集群 — — 问题总结

Ambari搭建Hadoop集群 — — 问题总结 一、部署教程&#xff1a; 参考链接&#xff1a;基于Ambari搭建大数据分析平台-CSDN博客 二、问题总结&#xff1a; 1. VMwear Workstation 查看网关 2. 资源分配 参考&#xff1a; 硬盘&#xff1a;master&#xff08;29 GB&#xff…...

如何用python抓取豆瓣电影TOP250

1.如何获取网站信息&#xff1f; &#xff08;1&#xff09;调用requests库、bs4库 #检查库是否下载好的方法&#xff1a;打开终端界面&#xff08;terminal&#xff09;输入pip install bs4, 如果返回的信息里有Successfully installed bs4 说明安装成功&#xff08;request…...

鸽笼原理与递归 - 离散数学系列(四)

目录 1. 鸽笼原理 鸽笼原理的定义 鸽笼原理的示例 鸽笼原理的应用 2. 递归的定义与应用 什么是递归&#xff1f; 递归的示例 递归与迭代的对比 3. 实际应用 鸽笼原理的实际应用 递归的实际应用 4. 例题与练习 例题1&#xff1a;鸽笼原理应用 例题2&#xff1a;递归…...

Ubuntu 20.04常见配置(含yum源替换、桌面安装、防火墙设置、ntp配置)

Ubuntu 20.04常见配置 1. yum源配置2. 安装桌面及图形化2.1 安装图形化桌面2.1.1 选择安装gnome桌面2.1.2 选择安装xface桌面 2.2 安装VNC-Server 3. ufw防火墙策略4. 时区设置及NTP时间同步4.1 时区设置4.2 NTP安装及时间同步4.2.1 服务端&#xff08;例&#xff1a;172.16.32…...

AI学习指南深度学习篇-生成对抗网络的基本原理

AI学习指南深度学习篇-生成对抗网络的基本原理 引言 生成对抗网络&#xff08;Generative Adversarial Networks, GANs&#xff09;是近年来深度学习领域的一个重要研究方向。GANs通过一种创新的对抗训练机制&#xff0c;能够生成高质量的样本&#xff0c;其应用范围广泛&…...

什么是网络安全

网络安全是指通过采取必要措施&#xff0c;防范对网络的攻击、侵入、干扰、破坏和非法使用以及意外事故&#xff0c;使网络处于稳定可靠运行的状态&#xff0c;以及保障网络数据的完整性、保密性、可用性的能力。 网络安全涉及多个层面&#xff0c;包括硬件、软件及其系统中数…...

Redis list 类型

list类型 类型介绍 列表类型 list 相当于 数组或者顺序表 list内部的编码方式更接近于 双端队列 &#xff0c;支持头插 头删 尾插 尾删。 需要注意的是&#xff0c;Redis的下标支持负数下标。 比如数组大小为5&#xff0c;那么要访问下标为 -2 的值可以理解为访问 5 - 2 3 …...

Linux更改固定IP地址

1.VMware里更改虚拟网络 一: 二: 三:确定就好了 2.修改Linux系统的固定IP 一:进入此文件 效果如下: 执行以下命令: 此时IP已更改 3.远程连接 这个是前提!!! 更改网络编辑器后网络适配器可能会修改,我就是遇着这个,困住我了一会 一:可以以主机IP对应连接 连接成功 二:主机名连…...

Qt+大恒相机回调图片刷新使用方式

一、前言 上篇文章介绍了如何调用大恒SDK获得回调图片&#xff0c;这篇介绍如何使用这些图片并刷新到界面上。考虑到相机的帧率很高&#xff0c;比如200fps是很高的回调频率。那么我们的刷新频率是做不到这么快&#xff0c;也没必要这么快。一般刷新在60帧左右就够了。 二、思路…...

Docker 环境下 PostgreSQL 监控实战:从 Exporter 到 Prometheus 的部署详解

Docker 环境下 PostgreSQL 监控实战&#xff1a;从 Exporter 到 Prometheus 的部署详解 文章目录 Docker 环境下 PostgreSQL 监控实战&#xff1a;从 Exporter 到 Prometheus 的部署详解一 节点简述二 节点监控部署1&#xff09;创建 PostgreSQL 的 exporter 账号2&#xff09;…...

构建带有调试符号的srsRAN 4G

### 构建带有调试符号 首先确保已下载srsRAN 4G&#xff0c;并已创建并导航至构建文件夹&#xff1a; bash git clone https://github.com/srsran/srsran_4g.git cd srsRAN_4G mkdir build cd build 若srsRAN 4G已构建完成&#xff0c;应清除原有构建文件夹后继续。 可以使…...

算法题总结(十)——二叉树上

#二叉树的递归遍历 // 前序遍历递归LC144_二叉树的前序遍历 class Solution {public List<Integer> preorderTraversal(TreeNode root) {List<Integer> result new ArrayList<Integer>(); //也可以把result 作为全局变量&#xff0c;只需要一个函数即可。…...

【MySQL】MySQL 数据库主从复制详解

目录 1. 基本概念1.1 主从架构1.2 复制类型 2. 工作原理2.1 复制过程2.2 主要组件 3. 配置步骤3.1 准备工作3.2 在主服务器上配置3.3 在从服务器上配置 4. 监控和维护4.1 监控复制状态4.2 处理复制延迟4.3 故障恢复 5. 备份策略5.1 逻辑备份与物理备份5.2 增量备份 6. 使用场景…...

一种格式化printf hex 数据的方法

格式化输出HEX数据 调试过程中通常需要个格式化输出16进制数据&#xff0c;为了方便美观可以参考如下方法。 #define __is_print(ch) ((unsigned int)((ch) - ) < 127u - )/*** dump_hex* * brief hex打印* * param buf: 需要打印的原始数据* param size: 原始数据类型*…...

在LabVIEW中如何读取EXCEL

在LabVIEW中读取Excel文件通常使用“报告生成工具包”&#xff08;Report Generation Toolkit&#xff09;。以下是详细步骤&#xff1a; ​ 安装工具包&#xff1a;确保已安装“报告生成工具包”。这通常随LabVIEW一起提供&#xff0c;但需要单独安装。 创建VI&#xff1a; 打…...

布匹瑕疵检测数据集 4类 2800张 布料缺陷 带标注 voc yolo

布匹瑕疵检测数据集 4类 2800张 布料缺陷 带标注 voc yolo 对应标注&#xff0c;格式VOC (XML)&#xff0c;选配Y0L0(TXT) label| pic_ num| box_ _num hole: (425&#xff0c; 481) suspension_ wire: (1739&#xff0c; 1782) topbasi: (46&#xff0c; 46) dirty: (613&…...

灵动微高集成度电机MCU单片机

由于锂电技术的持续进步、消费者需求的演变、工具种类的革新以及应用领域的扩展&#xff0c;电动工具行业正呈现出无绳化、锂电化、大功率化、小型化、智能化和一机多能化的发展趋势。无绳化和锂电化的电动工具因其便携性和高效能的特性&#xff0c;已成为市场增长的重要驱动力…...

陪护小程序|护理陪护系统|陪护小程序成品

智能化&#xff0c;作为智慧医疗宏伟蓝图的基石&#xff0c;正引领着一场医疗服务的深刻变革。在这场变革的浪潮中&#xff0c;智慧医院小程序犹如璀璨新星&#xff0c;迅速崛起&#xff0c;而陪护小程序的诞生&#xff0c;更是如春风化雨&#xff0c;细腻地触及了老年病患、家…...

【JVM】基础篇

1 初识JVM 1.1 什么是JVM JVM 全称是 Java Virtual Machine&#xff0c;中文译名 Java虚拟机。JVM 本质上是一个运行在计算机上的程序&#xff0c;他的职责是运行Java字节码文件。 Java源代码执行流程如下&#xff1a; 分为三个步骤&#xff1a; 1、编写Java源代码文件。 …...

软件测试工程师 朝哪里进阶?

软件测试工程师 朝哪里进阶&#xff1f; 这里浅谈一下我的看法。 软件测试工程师 朝哪里进阶呢&#xff1f; 当我们测试工程师工作了2-3年后&#xff0c;就需要往前走往高走&#xff0c;就像一句名言说的&#xff1a;我们需要像ceo一样工作。 将自己的边界扩大一点&#xff0…...

Obsidian Plugin Release Pre-check

- [ ] 修改代码 - [ ] 修改README.md - [ ] 修改manifest.json - [ ] --将上述修改push到GitHub-- - [ ] 修改release版本 git tag git tag -a 1.0.6 -m "1.0.6" git push origin 1.0.6 ------------------------------------------- 备忘https://semver.org/lang/…...

Unity中实现预制体自动巡逻与攻击敌人的完整实现指南

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…...

OpenJudge | Shortest Prefixes

总时间限制: 1000ms 内存限制: 65536kB 描述 A prefix of a string is a substring starting at the beginning of the given string. The prefixes of “carbon” are: “c”, “ca”, “car”, “carb”, “carbo”, and “carbon”. Note that the empty string is not co…...

速盾:高防服务器是如何防御CC攻击的?

高防服务器是一种专门用于防御DDoS&#xff08;分布式拒绝服务&#xff09;攻击的服务器。其中一种常见的DDoS攻击就是CC&#xff08;连续性攻击&#xff09;&#xff0c;它通过向目标服务器发送大量的请求来耗尽服务器资源&#xff0c;使网站无法正常运行。高防服务器采用多种…...

Android阶段学习思维导图

前言 记录下自己做的一个对Android原生应用层的思维导图&#xff0c;方便个人记忆扩展&#xff1b;这里只露出二级标题。 后语 虽然有些内容只是初步了解&#xff0c;但还是记录了下来&#xff1b;算是对过去一段学习的告别。...

React生命周期案例详解

React 组件的生命周期是指组件从创建、渲染、更新到卸载的整个过程。在 React 16 及之前的版本中&#xff0c;生命周期方法被分为几个不同的阶段&#xff1a;挂载&#xff08;Mounting&#xff09;、更新&#xff08;Updating&#xff09;、卸载&#xff08;Unmounting&#xf…...

【ubuntu】ubuntu20.04安装显卡驱动

1.安装 点击右下角Apply Changes。 等安装好之后&#xff0c;重启。 现在的nvidia驱动已经很好安装了&#xff0c;比早期时安装出现黑屏等情况好了很多。 2.验证 nvidia-smi...