信息安全工程师(37)防火墙概述
前言
防火墙是一种网络安全系统,旨在监控和控制网络流量,根据预定义的安全规则决定是否允许数据包的传输。
一、定义与功能
定义:防火墙是网络安全的第一道防线,由硬件设备和软件系统共同构成,位于外网与内网之间、公共网与专用网之间,用于保护内部网络免受外部威胁。
主要功能:
- 保护内部网络:通过过滤进入和离开网络的数据流,确保只有合法和授权的流量能够访问内部服务,从而保护关键服务免受未经授权的访问和潜在的攻击。
- 控制系统访问:通过配置访问控制列表(ACLs)和规则集,精细地管理哪些用户、设备或应用可以访问特定的系统资源。
- 集中安全管理:作为集中的安全控制点,统一管理和监控网络中的安全策略、日志和事件,提高安全管理效率。
- 增强保密性:通过加密和封装数据流,确保敏感信息在传输过程中不被窃取或篡改。
- 策略执行:设定和执行严格的安全策略,自动化地阻止违反规定的行为。
二、工作原理
防火墙通过设置访问规则和过滤策略来控制网络流量的进出。它检测和过滤传入和传出的网络数据包,根据预设的规则判断是否允许通过,从而实现网络访问的控制和限制。同时,防火墙还可以对数据包进行日志记录和报警,及时发现异常活动并采取相应的安全措施。
三、类型与发展
类型:
- 包过滤防火墙:最早的一种防火墙类型,通过检查数据包的源地址、目标地址、端口号和协议类型来决定是否允许该数据包通过。
- 代理防火墙(应用层防火墙):充当客户端与服务器之间的中介来控制流量,能够在应用层解析并重新封装数据请求,提供更细致的流量过滤。
- 状态检测防火墙:结合了包过滤和会话状态跟踪的功能,不仅检查数据包的基本信息,还跟踪网络连接的状态和上下文。
- 下一代防火墙(NGFW):在传统防火墙基础上发展而来的高级防火墙,融合了深度包检测(DPI)、入侵防御系统(IPS)、应用识别与控制以及高级威胁防御功能。
发展历史:
- 1988年,防火墙问世。
- 1992年,AT&T Bell Labs的研究人员开发了状态检测防火墙。
- 1994年,Check Point Software Technologies发布了第一款商用状态检测防火墙软件Firewall-1。
- 2003年,统一威胁管理(UTM)设备开始出现。
- 2007年,Palo Alto Networks发布了第一款下一代防火墙(NGFW)。
- 2010年代初,防火墙开始集成高级威胁防御功能,如沙箱技术(Sandboxing)和行为分析。
- 2010年代中期,随着云计算的兴起,云防火墙开始广泛应用。
- 2020年代,防火墙技术结合人工智能和机器学习,提高威胁检测的准确性和响应速度,并向零信任架构迈进。
四、应用场景
防火墙广泛应用于企业、机构和个人用户的网络环境中,特别是在需要保护敏感数据和关键服务的场景中。例如,金融机构、医疗机构、政府机构等都需要使用防火墙来确保网络的安全性和稳定性。
总结
综上所述,防火墙作为网络安全的核心组件,在保护内部网络免受外部威胁方面发挥着关键作用。随着技术的不断发展,防火墙的功能和性能也在不断提升,以适应日益复杂的网络安全环境。
结语
即使前路茫茫无尽
也要一步一步走下去
因为每一步都算数
!!!

相关文章:
信息安全工程师(37)防火墙概述
前言 防火墙是一种网络安全系统,旨在监控和控制网络流量,根据预定义的安全规则决定是否允许数据包的传输。 一、定义与功能 定义:防火墙是网络安全的第一道防线,由硬件设备和软件系统共同构成,位于外网与内网之间、公共…...
多元化网络团队应对复杂威胁
GenAI、ML 和 IoT 等技术为威胁者提供了新的工具,使他们更容易针对消费者和组织发起攻击。 从诱骗受害者陷入投资骗局的Savvy Seahorse ,到使用 ChatGPT 之类的程序感染计算机并阅读电子邮件的自我复制 AI 蠕虫,新的网络威胁几乎每天都在出现…...
Observer(观察者模式)
1. 意图 定义对象间的一种一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都得到通知并被自动更新。 在观察者模式中,有两类对象:被观察者(Subject)和观察者(Observer…...
Python深度学习进阶与前沿应用:注意力机制、Transformer模型、生成式模型、目标检测算法、图神经网络、强化学习等
近年来,伴随着以卷积神经网络(CNN)为代表的深度学习的快速发展,人工智能迈入了第三次发展浪潮,AI技术在各个领域中的应用越来越广泛。为了帮助广大学员更加深入地学习人工智能领域最近3-5年的新理论与新技术࿰…...
24.1 prometheus-exporter管理
本节重点介绍 : exporter 流派 必须和探测对象部署在一起的1对多的远端探针模式 exporter管控的难点 1对1 的exporter 需要依托诸如 ansible等节点管理工具 ,所以应该尽量的少 1对1的exporter改造成探针型的通用思路 exporter 流派 必须和探测对象部署在一起的…...
【Arduino IDE安装】Arduino IDE的简介和安装详情
目录 🌞1. Arduino IDE概述 🌞2. Arduino IDE安装详情 🌍2.1 获取安装包 🌍2.2 安装详情 🌍2.3 配置中文 🌍2.4 其他配置 🌞1. Arduino IDE概述 Arduino IDE(Integrated Deve…...
『网络游戏』自适应制作登录UI【01】
首先创建项目 修改场景名字为SceneLogin 创建一个Plane面板 - 将摄像机照射Plane 新建游戏启动场景GameRoot 新建空节点重命名为GameRoot 在子级下创建Canvas 拖拽EventSystem至子级 在Canvas子级下创建空节点重命名为LoginWnd - 即登录窗口 创建公告按钮 创建字体文本 创建输入…...
用Manim简单解释奇异值分解(SVD)和图像处理方面的应
一,介绍 奇异值分解(SVD)是一种重要的矩阵分解技术,在统计学、信号处理和机器学习等领域有广泛应用。对于任意给定的矩阵 A(可以是任意形状的矩阵),SVD将其分解为三个特定的矩阵的乘积&#x…...
红外变电站分割数据集,标注为json格式,总共有5类,避雷器(289张),绝缘子(919张),电流互感器(413张),套管(161张),电压互感器(153张)
红外变电站分割数据集,标注为json格式,总共有5类 避雷器(289张),绝缘子(919张),电流互感器(413张),套管(161张)࿰…...
HBase 性能优化 详解
HBase 是基于 Hadoop HDFS 之上的分布式 NoSQL 数据库,具有高伸缩性和强大的读写能力。然而,由于其分布式架构和复杂的数据存储模式,在高并发、大规模数据场景下,HBase 性能优化至关重要。从底层原理和源代码层面理解 HBase 的特性…...
杭电2041-2050
2041 这里进入递归专题了 #include<bits/stdc.h> #include<iostream> //简单递归 using namespace std; long long int M[45]; int main() {int n;M[1]1;M[2]1;for(int i3;i<45;i){M[i]M[i-1]M[i-2];}while(cin>>n){while(n--){int m;cin>>m;cout…...
Ambari搭建Hadoop集群 — — 问题总结
Ambari搭建Hadoop集群 — — 问题总结 一、部署教程: 参考链接:基于Ambari搭建大数据分析平台-CSDN博客 二、问题总结: 1. VMwear Workstation 查看网关 2. 资源分配 参考: 硬盘:master(29 GBÿ…...
如何用python抓取豆瓣电影TOP250
1.如何获取网站信息? (1)调用requests库、bs4库 #检查库是否下载好的方法:打开终端界面(terminal)输入pip install bs4, 如果返回的信息里有Successfully installed bs4 说明安装成功(request…...
鸽笼原理与递归 - 离散数学系列(四)
目录 1. 鸽笼原理 鸽笼原理的定义 鸽笼原理的示例 鸽笼原理的应用 2. 递归的定义与应用 什么是递归? 递归的示例 递归与迭代的对比 3. 实际应用 鸽笼原理的实际应用 递归的实际应用 4. 例题与练习 例题1:鸽笼原理应用 例题2:递归…...
Ubuntu 20.04常见配置(含yum源替换、桌面安装、防火墙设置、ntp配置)
Ubuntu 20.04常见配置 1. yum源配置2. 安装桌面及图形化2.1 安装图形化桌面2.1.1 选择安装gnome桌面2.1.2 选择安装xface桌面 2.2 安装VNC-Server 3. ufw防火墙策略4. 时区设置及NTP时间同步4.1 时区设置4.2 NTP安装及时间同步4.2.1 服务端(例:172.16.32…...
AI学习指南深度学习篇-生成对抗网络的基本原理
AI学习指南深度学习篇-生成对抗网络的基本原理 引言 生成对抗网络(Generative Adversarial Networks, GANs)是近年来深度学习领域的一个重要研究方向。GANs通过一种创新的对抗训练机制,能够生成高质量的样本,其应用范围广泛&…...
什么是网络安全
网络安全是指通过采取必要措施,防范对网络的攻击、侵入、干扰、破坏和非法使用以及意外事故,使网络处于稳定可靠运行的状态,以及保障网络数据的完整性、保密性、可用性的能力。 网络安全涉及多个层面,包括硬件、软件及其系统中数…...
Redis list 类型
list类型 类型介绍 列表类型 list 相当于 数组或者顺序表 list内部的编码方式更接近于 双端队列 ,支持头插 头删 尾插 尾删。 需要注意的是,Redis的下标支持负数下标。 比如数组大小为5,那么要访问下标为 -2 的值可以理解为访问 5 - 2 3 …...
Linux更改固定IP地址
1.VMware里更改虚拟网络 一: 二: 三:确定就好了 2.修改Linux系统的固定IP 一:进入此文件 效果如下: 执行以下命令: 此时IP已更改 3.远程连接 这个是前提!!! 更改网络编辑器后网络适配器可能会修改,我就是遇着这个,困住我了一会 一:可以以主机IP对应连接 连接成功 二:主机名连…...
Qt+大恒相机回调图片刷新使用方式
一、前言 上篇文章介绍了如何调用大恒SDK获得回调图片,这篇介绍如何使用这些图片并刷新到界面上。考虑到相机的帧率很高,比如200fps是很高的回调频率。那么我们的刷新频率是做不到这么快,也没必要这么快。一般刷新在60帧左右就够了。 二、思路…...
【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...
CMake基础:构建流程详解
目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...
Go 语言接口详解
Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...
dedecms 织梦自定义表单留言增加ajax验证码功能
增加ajax功能模块,用户不点击提交按钮,只要输入框失去焦点,就会提前提示验证码是否正确。 一,模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...
学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...
Mysql中select查询语句的执行过程
目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...
基于SpringBoot在线拍卖系统的设计和实现
摘 要 随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统,主要的模块包括管理员;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...
基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...
